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Abstract

This paper studies the optimal scoring of multiple choice tests in which the

marks for wrong selections and omissions jointly minimize the mean square

di�erence between score and examinees' abilities. Examinees are loss averse

and, as a result, reluctant to risk answers on the basis of their knowledge. I

�nd that it is e�cient to incentivize the lowest able to omit, except when the

test has a very large number of items. The mark for omission is positive when

the test size is limited and negative when it is large. Loss aversion generally

improves estimators e�ciency by spontaneously inducing more omission and

thereby reducing the need to bias the mark upward to encourage omission.

The model sheds light on the statistical properties of two widely used scoring

methods, Number right scoring and Formula scoring.

J.E.L. codes: A200, C930, D800

*Univ. Orléans, LEO. E-mail : alexis.direr@univ-orleans.fr. Phone: 33 (0)1 49 55 68 64.

Address: rue de Blois - BP 26739, 45067 Orléans Cedex 02. I thank for useful comments Marcel

Voia and participants of the 2019 AFSE Conference. This article has a companion website.

1

https://direr.shinyapps.io/qcm_shiny/


Keywords : estimation theory; multiple choice tests; decision making, loss

aversion

2



1 Introduction

Multiple-choice tests are a popular type of assessment in education. They have

several advantages like fast and easy scoring, wide sampling of the content and

grading exempt from rater bias. A major drawback is the di�culty of dealing

with guessing. Examinees who have no clues about which answer is right may still

select one at random and reap a point if lucky. More generally, examinees have

often partial knowledge and select answers which they judge more likely. While an

incorrect selection is always the result of a lack of knowledge, a correct one may

result either from knowing, supposing or guessing, without possibly telling the three

apart.

Guessing adds an error component to scores. Suppose that a test-taker has a

probability 0.5 of selecting the right option. She may be lucky and gets an average

score of 60%, or unlucky and gets a score of 40%. In both cases, her success score is

mismeasured. If the test consists of many items, the law of large numbers ensures

that the measurement error converges to zero. But for practical reasons, most tests

have a limited number of items. The chance factor also depends on examinees'

abilities and the number of options per item. Insofar as the scoring rule is not

intended to reward chance, e�cient marks should adequately correct for it.

The scoring method should also take into account the possibility given to ex-

aminees to leave some items blank if they are unsure about the right option. The

mark for omission is an estimator of average omitters' ability. Omission suppresses

the uncertainty due to the chance factor but introduces another type of measure-

ment error which stems from the inability of sorting examinees with di�erent levels

of partial knowledge. The problem is especially acute if a signi�cant fraction of

examinees omit.

How do the marks a�ect incentives also depends on the extent to which exami-

nees are reluctant to risk answers on the basis of their knowledge. Several studies
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have shown that examinees do not answer all items even when expected mark from

guessing is greater than for omitting (Sheri�s and Boomer, 1954, Ebel, 1968, Cross

and Frary, 1977, Bliss, 1980, Pekkarinen, 2015). Those observations are not con-

sistent with examinees being risk neutral score maximizers. A departure from risk

neutrality is introduced by assuming that examinees are loss averse: they dislike

receiving a bad mark by a larger extent than they like getting a full mark when they

are right. This creates a bias toward omission, which consequences for the design

of the scoring rule are investigated.

To this end, a statistically e�cient scoring model is investigated which marks

minimize a well speci�ed measurement error function. The problem di�ers from

a standard mean estimation procedure as the marks serve two purposes at once.

They provide an estimation of ability through the computation of a score for every

examinee, but they also in�uence examinees in their choice between selection and

omission, which in turn changes the conditions under which abilities are estimated.

To study to what extent those two objectives interact, the grading rule minimizes

the mean square di�erence between examinees' scores and abilities.

I �nd that the e�cient scoring rule is highly sensitive to the size of the test.

When a limited number of items is proposed to examinees, answers by the less

able are too noisy to allow accurate estimation of their ability. The e�cient mark

for omission is positive to induce the less able to omit and reveal their type. The

fewer items, the more omitters and the higher the mark for omission. Loss aversion

generally improves estimators e�ciency by spontaneously inducing more omission

and thereby reducing the need to bias the mark upward to favor omission. When the

test has a large sample of questions, ability of low able examinees is estimated with

accuracy, eliminating the need to induce them to omit. The mark for omission drops

to negative values so that all examinees answer. The penalty for wrong answers is

approximately insensitive to the number of items and the scoring strategy.

Multiple choice tests as an assessment tool have a long history. They were �rst

4



administered on a large scale during the World War I by the US Army to quickly

identify the abilities of hundred of thousands of recruits (Ebel, 1979). Its adoption

spread rapidly in various domains, like intelligence testing (Pintner, 1923) or in

education. Kelly (1916) is the �rst researcher to report and investigate the use of

multiple choice tests in measuring children reading skills. The standardization of the

evaluation process proved to be particularly adapted to large scale and high stake

exams, like the Scholastic Aptitude Test (SAT) and Graduate Record Examination

(GRE), to take two prominent examples in the USA.

To what extent tests provide accurate and valid measures of ability, skills or

educational achievement has been studied for more than a century by psychometrics,

a research domain at the intersection of psychology and statistics. Many of its

results have been incorporated into what is regarded today as classical test theory

(see e.g., McDonald, 1999). It is based on the central assumption that a person's

score on a test is the sum of a true score and an error score (Harvill, 1991). The

research program has developed around two key concepts: reliability and validity.

A measure is reliable if it produces similar results under consistent conditions.

Reliable scores are reproducible from one test to another (Traub and Rowley, 1991).

A valid measure is one that measures what it is intended to measure. A voluminous

theoretical and empirical literature has applied those concepts to the properties of

di�erent scoring rules (e.g., Diamond and Evans, 1973; Burton, 2001; Lesage et al.,

2013).

The model departs from psychometric studies in two ways. First, a special at-

tention is paid to the interplay between the scoring rule, risk preferences and ability

estimation. In most existing studies, risk preferences are not modeled or when they

are, examinees are risk neutral. By posing the realistic joint assumption of loss aver-

sion and narrow framing, examinees display a bias toward omission, in accordance

with the empirical literature (e.g., Akyol et al., 2016). Second, the literature has

focused on ad hoc scoring rules in which the marks for wrong answers and omission

are not derived from �rst principles. The two marks are made endogenous here by
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explicitly modeling the deviation of actual score from true score, which is the score

that examinees would obtain if their ability were observed.

A few articles have also made the marks endogenous. Espinosa and Gardeazabal

(2010) simulate a model of optimal scoring with heterogeneous risk aversion and

varying item di�culty. They �nd a relatively high penalty to dissuade guessing.

Budescu and Bo (2015) simulate a model of optimal scoring with di�erent assump-

tions (heterogeneous loss aversion and miscalibration of probabilities). They �nd

that a negative penalty aggravates the score bias and standard deviation, and de-

creases the correlation between simulated and true scores. Akyol, Key and Krishna

(2016) model the test-taking behavior of students in the �eld, and use the model

to estimate their risk preferences. They then simulate counterfactual scoring rules

and �nd that increasing the penalty for wrong answers has a signi�cant impact on

omission, which in turn improves estimation of examinees' abilities. Risk aversion

heterogeneity has little in�uence on simulated scores, which makes the case for neg-

ative penalty. In those articles, only the penalty for wrong answers is optimized,

whereas both the marks for wrong answers and omission are endogenous in the

present model. Another major di�erence is the use of the widely adopted mean

squared error to measure the quality of the estimators, which allows analytical re-

sults and simple interpretations. By assuming that examinees only di�er by their

knowledge, and not personality traits like risk aversion, the present model does not

address the issue of the impact of heterogeneous preferences on measures' validity.

The remainder of the paper is organized as follows. Section 2 presents the

scoring model and its basic ingredients: true score, loss aversion and mean squared

error. Section 3 put forth several analytical properties of the e�cient scoring model.

Section 4 calibrates a stylized model and presents simulation results. Section 5

relates and compare the model to the two most used scoring rules, Number right

scoring and Formula scoring. Section 6 concludes.
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2 Scoring model

2.1 Scoring rule

A test composed of n items is taken by examinees. Each item has m possible

answers, one correct and m − 1 incorrect. Items are supposed to be well written,

without obvious answers, traps, or ambiguous formulations. Options are correctly

randomized within each item. There is enough time for all questions to be answered.

I assume further that all items are equally di�cult and that examinees have a

constant probability p of correctly answering any of them. The probability varies

across examinees and is a proxy of their knowledge of the content area covered by

the test.

The test-maker's objective is to design a scoring rule so that examinees receive

a score as close as possible to their ability. Every item has three possible outcomes

to which are assigned speci�c marks. The mark given to a correct selection is

normalized to 1. The mark assigned to wrong selections is denoted θ and the one

to omissions γ. Minimal restrictions are imposed on the marks:

θ ≤ γ < 1

The �nal score is the summation of marks obtained for all items divided by the

number n of items. Let z ∈ [0, n] be the number of omitted items and x̃ ∈ [0, n− z]

the number of right selections among the n−z answered items. x̃ follows a binomial

distributionB(n−z, p). Examinees' score is the sum of right answers, wrong answers

and omitted items weighted by 1, θ and γ respectively, and divided by the number

of items:

s̃ =
x̃+ (n− z − x̃)θ + zγ

n
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2.2 True score

True score is the score examinees would be credited if probabilities p of selecting

the right option were perfectly observed. The score is linear in p:

s(p) = p+ (1− p)θ∗

and is interpreted as the expected score obtained in a test with marks 1 for right

selections and θ∗ for wrong ones, assuming examinees do not omit. It is the observed

score's component unin�uenced by random events (Harvill, 1991).

True score will in general be lower than p (θ∗ < 0) to penalize guessing. An

examinee selecting options at random would otherwise obtain a strictly positive

score: s(p) = p = 1/m, with m the number of options per item. One way to

eliminate the chance factor consists in setting θ∗ = −1/(m − 1), as in Formula

scoring (see Section 5). Examinee's expected score is zero in the extreme case they

select options at random in all items:

E
(
s
( 1

m

))
=

1

m
− m− 1

m

1

m− 1
= 0 (1)

Other corrections are possible. If some examinees have false knowledge, they

could perform worse than selecting options at random. In many situations, being

aware of one's ignorance about a topic is preferable to having false knowledge about

it. The �rst case is likely to encourage individuals to search for information, whereas

the second case may lead individuals to make wrong decisions. In this case, pure

guessing (or omission) re�ects a minimal ability which could be rewarded by setting

θ∗ above −1/(m − 1). The case of misinformation is ruled out in this paper by

assuming that examinees' lowest ability, denoted p0, is equal to 1/m.

2.3 Risk Preferences

Omission delivers a sure mark compared to selection, unless examinees are certain

about which option is right. The choice between a sure outcome and a risky one is
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modeled through three assumptions. First, examinees get utility u(x) from mark x

of every item, and not from average or aggregate score. Narrow framing (Tversky

and Kahnemman, 1981), the assumption that people do not pool all sources of

risk before deciding, has proven relevant in various contexts of decision involving

multiple risks (Tversky and Kahnemman, 1981, Read, Loewenstein and Rabin,

1999).

Second, examinees focus on losses and gains and overweight losses. They are

more a�ected by negative outcomes than by positive ones of same magnitude. Loss

aversion is a central feature of Kahneman and Tversky's (1979) prospect theory

of how people evaluate risks. Its validity is based on extensive experimental ev-

idence, particularly when associated with narrow framing. Bereby-Meyer, Meyer

and Flascher (2002) provide evidence of narrow framing and loss aversion in the

context of exam taking.1

Third, the utility derived from a positive or negative mark is linear: u(1) = 1,

u(γ) = γ. Applied to the context of exam taking, the utility loss associated with a

wrong selection is proportional to the mark: u(θ) = λθ, with λ the coe�cient of loss

aversion. A wrong selection is edited as a loss by examinees whatever the mark's

sign: λ > 1 if θ ≤ 0 and λ < 1 if θ > 0. Loss aversion is synthetically de�ned by

the sign condition

θ(λ− 1) ≤ 0

Loss neutrality is equivalent to risk neutrality if λ = 1. Loss averse examinees

do not like risk. They always prefer a sure mark to a random one with the same

expectation.

1See also Budescu and Bo (2015). The joint assumption that people tend to focus on individual

gains and losses rather than on average outcomes is sometimes labeled myopic loss aversion (Bar-

beris, Huang, and Thaler, 2006; Barberis and Huang, 2008). Narrow framing is also in accordance

with observations showing that individuals do not become risk neutral when they take large tests

involving many independent items, which risk vanishes once aggregated (Pekkarinen, 2015; Akyol,

Key and Krishna, 2016; Iriberri and Rey-Biel, 2021).
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Given a scoring rule (γ, θ), omission is preferred to selection if the mark for

omission is greater than the loss-weighted expected mark of a response:

γ > p+ (1− p)λθ

p̄ is de�ned as the success probability of test-takers indi�erent between selection

and omission:

γ = p̄+ (1− p̄)λθ

Examinees omit when they are not con�dent enough in their selection: p ≤ p̄,

and answer in the contrary case. p̄ positively depends on mark γ and negatively on

penalty θ. Compared to the case of risk neutrality (λ = 1), loss aversion raises the

threshold probability p̄:

p̄ =
γ − λθ
1− λθ

>
γ − θ
1− θ

if λ > 1 (2)

2.4 Mean squared error

Examinee's true score is estimated through respondent's success rate in case of

answer, or by assigning a constant mark in case of omission, which signals a low

ability on average. Both methods produce measurement errors.

Consider �rst an examinee whose success probability is p > p̄. Since p does not

vary across items and all items have the same di�culty, she answers all of them and

gets the score:

s̃ =
x̃+ (n− x̃)θ

n
(3)

which is interpreted as a point linear estimator of true score s(p). Its quality can

be measured by common statistical methods and optimized by the adequate choice

of θ and γ. The mean squared error (MSE) of observed score s̃ taken by examinee

with success probability p is average squared di�erence between s̃ and true score

s(p):

mse(θ; p) = E
((
s̃− s(p)

)2
)
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MSE is a commonly used measure of estimator's performance. It is analytically

tractable and lends itself to the intuitive decomposition:

E
(
(s̃− s(p))2

)
= V (s̃; p) +

(
E(s̃; p)− s(p)

)2

The �rst component is observed score's variance. The second one is squared bias,

which measures by how far the expected score deviates from its theoretical mean.

The MSE criterion controls therefore both for sample �uctuations and estimator's

accuracy.

Consider now a test-taker whose success probability is p ≤ p̄. Since p is constant

across items, she omits all of them and gets the score γ. She would obtain the true

score s(p) if her ability was perfectly measured. Examinee's quadratic error is

squared bias:

sb(γ; p) =
(
s(p)− γ

)2

While individual success probabilities are not observed by the test-maker, their

distribution is assumed to be known. Let f(p) denote the success probability density

function. The test-maker chooses the marks θ and γ so as to minimize the MSE

averaged over examinees:

min
γ,θ

MSE(γ, θ) =

∫ p̄

p0

sb(γ; p)f(p)dp+

∫ 1

p̄

mse(θ; p)f(p)dp

=

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp+

∫ 1

p̄

E
((
s̃− s(p)

)2
)
f(p)dp (4)

Like the MSE component from selection, the MSE component from omission,

normalized by their proportion F (p̄) in the population, lends itself to a decomposi-

tion. Let us �rst rewrite the average squared error:

1

F (p̄)

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp = E|omit

(
(s(p)− γ)2

)
where E|omit is expectation conditional on examinees being omitters. Let us denote

s̄(p) as omitters' average ability:

s̄(p) = E|omit

(
s(p)

)
=

1

F (p̄)

∫ p̄

p0

s(p)f(p)dp (5)
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and omitters' ability conditional variance as:

V|omit

(
s(p)

)
= E|omit

((
s(p)− s̄(p)

)2
)

(6)

The MSE component from omissions writes:

1

F (p̄)

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp = V|omit

(
s(p)

)
+
(
s̄(p)− γ

)2

Total omitters' measurement error has two components. The variance term

measures how far omitters' ability deviates from its mean. The more omitters (the

higher p̄), the larger the dispersion and the higher the MSE. The second term is

squared bias which measures by how far the mark deviates from omitters' average

ability. It follows that, as long as some examinees omit, the variance term in (6) is

a lower bound whatever the number of items in the test. This is a major di�erence

with the MSE component from answers where the average error can always be

brought to zero with n large enough.

3 E�cient scoring

While the full model cannot be analytically studied, three simple cases are of inter-

est. In the �rst case, examinees' abilities are estimated under the assumption that

their choice to select or omit is insensitive to the marks (Subsection 3.1). In the

second case, omission is endogenous, but the number of items is arbitrarily large

(Subsection 3.2). In the last con�guration, examinees are risk neutral (Subsection

3.3). The general case with a �nite sample of items, omission, and loss aversion is

studied in next section by way of simulations.

3.1 Exogenous omission

Let us assume as a �rst approximation that the proportion of omitters is exogenous

and equal to F (p̄). The scoring problem can be decomposed into two separate and
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simpler problems. The e�cient mark θ̂ minimizes the part of the MSE restricted

to the most pro�cient examinees who choose to select:∫ 1

p̄

mse(θ; p)f(p)dp =

∫ 1

p̄

V (s̃; p) +
(
E(s̃; p)− s(p)

)2
f(p)dp

The e�cient penalty θ̂ is larger than the notional mark θ∗, and the di�erence

shrinks with test's size n:

Proposition 1 (i) θ̂ ∈ (θ∗, 1), (ii) θ̂ decreases with n, (iii) θ̂ → θ∗ if n→∞.

Proof Score's formula is given by (3) where x̃ follows a binomial distribution

B(n, p). Its �rst two moments are E(s̃; p) = p + (1 − p)θ and V (s̃; p) = (1 −

θ)2p(1− p)/n. It follows that:∫ 1

p̄

mse(θ; p)f(p)dp =

∫ 1

p̄

( 1

n
(1− θ)2p(1− p) + (1− p)2θ2

)
f(p)dp

The e�cient mark θ∗ satis�es:

θ̂ − θ∗

1− θ̂
=

1

n

∫ 1

p̄
p(1− p)f(p)dp∫ 1

p̄
(1− p)2f(p)dp

(7)

(i): the right hand term of (7) is positive. The case θ̂ > 1 is ruled out by θ∗ < 1.

(ii) and (iii) are straightforward from (7). �

A reduced penalty (θ closer to 1) lowers the score's variance but biases the

estimator. As more items are included in the test, abilities are estimated with

increasing precision, making less necessary to bias the mark to reduce statistical

�uctuations.

The e�cient mark γ̂ minimizes the part of the MSE restricted to omitters:∫ p̄

p0

mse(γ; p)f(p)dp =

∫ p̄

p0

(
s(p)− γ

)2
f(p)dp

The �rst order equation is:

2

∫ p̄

p0

(
s(p)− γ̂

)
f(p)dp = F (p̄)

(
γ̂ − E|omit

(
s(p)

))
= 0
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Given an exogenous proportion F (p̄) of omitters, the e�cient estimator is an

unbiased measure of omitters' average ability: γ̂ = E|omit

(
s(p)

)
. When the propor-

tion F (p̄) is endogenous and responds to marks' variations, we will see that it may

be e�cient to tweak the mark to induce a desired proportion of omission.

3.2 Large sample properties

When the number of items in the test is arbitrarily large, scores are perfect estima-

tors of ability. Omission should be discouraged as a result, except possibly for the

least able.

Proposition 2 θ̂ → θ∗ if n → ∞; γ̂ < p0 + (1 − p0)λθ∗ if λ > 1, and γ̂ ≤

p0 + (1− p0)θ∗ if λ = 1.

Proof The MSE minimization program with a �nite n is:

min
γ,θ

MSE(γ, θ) = min
γ,θ

∫ p̄

p0

(
γ − (p+ (1− p)θ∗)

)2

f(p)dp

+

∫ 1

p̄

( 1

n
(1− θ)2p(1− p) + (1− p)2(θ − θ∗)2

)
f(p)dp

The variance term asymptotically tends to zero with n:

lim
n→∞

MSE =

∫ p̄

p0

(
γ − (p+ (1− p)θ∗)

)2

f(p)dp+

∫ 1

p̄

(
(1− p)2(θ − θ∗)2

)
f(p)dp

Hence the MSE tends to zero when θ̂ → θ∗ and γ̂ < p0 + (1− p0)λθ∗ such that all

examinees answer, implying that the �rst integral is zero. If λ = 1, the omission

condition γ̂ = p0 + (1 − p0)λθ∗ induces the least knowledgeable to omit without

deteriorating the MSE. �

When the number of items grows larger, ability is estimated with increasing ac-

curacy. To the contrary, since omission signals low ability only on average, omitters
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create measurement errors which do not vanish with test length. Under risk neu-

trality (λ = 1), e�cient marks may indi�erently induce the least able to answer or

to omit, as the unbiasedness condition coincides with the incentives given to them

to omit.2

3.3 Finite sample properties

When the number of items is �nite, examinees' abilities are estimated with er-

rors due to �nite-sample �uctuations. First order conditions of the minimization

program (4) are:

∂MSE

∂γ
(γ, θ) =

(
sb(γ̂; p̄)−mse(θ̂; p̄)

)dp̄
dγ
f(p̄) +

∫ p̄

p0

∂sb

∂γ
(γ̂; p)f(p)dp = 0 (8)

∂MSE

∂θ
(γ, θ) =

(
sb(γ̂; p̄)−mse(θ̂; p̄)

)dp̄
dθ
f(p̄) +

∫ 1

p̄

∂mse

∂θ
(θ̂; p)f(p)dp = 0 (9)

The common term in both equations

sb(γ̂; p̄)−mse(θ̂; p̄) =
(
γ̂ − s(p̄)

)2 − E
(
(s̃− s(p̄))2

)
(10)

is the net e�ect on the MSE of marginal examinees with ability p̄ changing their

choice from selection to omission. The terms dp̄/dγ and dp̄/dθ are the e�ects of the

marks on threshold probability p̄ (see (2)). Raising γ or lowering θ both encourage

omission and expand the group of omitters:

dp̄

dγ
=

1

1− λθ̂
> 0 (11)

−dp̄
dθ

=
(1− p̄)λ
1− λθ̂

> 0

Suppose now that examinees are loss neutral (λ = 1). By de�nition, marginal

2If γ̂ = p0 + (1 − p0)θ∗, the least able are indi�erent between selection and omission. If they

omit, they get the unbiased mark γ̂ = s(p0). If they answer, they asymptotically obtain the same

score.
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examinees expect to obtain the same score whether they answer or omit:3

E(s̃; p̄) = γ (12)

The replacement e�ect, a key element in conditions (8) and (9), simpli�es to:4

sb(γ̂; p̄)−mse(θ̂; p̄) = −V (s̃; p̄) (13)

The replacement e�ect is negative (the MSE decreases when marginal exami-

nees change from selection to omission) and asymptotically tends to zero when the

number of items in the test expands. The bene�t of inducing more examinees to

omit at the margin leads to the following proposition:

Proposition 3 (i) γ̂ > p0 + (1− p0)θ̂ and (ii) γ̂ → p0 + (1− p0)θ∗ if n→∞.

Proof First order condition (8) with (11) and Lemma 13 becomes:∫ p̄

p0

∂sb

∂γ
(γ̂; p)f(p)dp =

V (s̃; p̄)

1− θ̂
≥ 0

The left-hand side term simpli�es to:∫ p̄

p0

∂

∂γ

(
γ̂ − s(p)

)2
f(p)dp = 2

∫ p̄

p0

(
γ̂ − s(p)

)
f(p)dp = F (p̄)

(
γ̂ − s̄(p)

)
with s̄(p) = E|omit

(
s(p)

)
de�ned in (5). The right-hand side term V (s̃; p̄)/(1−θ̂) > 0,

which implies both F (p̄) > 0 and γ̂ > s̄(p). The �rst inequality means that the less

able omit (p̄ > p0), which implies γ̂ > p0 + (1 − p0)θ̂. If n → ∞, V (s̃; p̄) → 0 and

as a result F (p̄)
(
γ̂ − s̄(p)

)
→ 0. From Proposition 2, θ̂ → θ∗, F (p̄) → 0 and only

the least able answer asymptotically: γ̂ → p0 + (1− p0)θ∗. �

Since the less knowledgeable select options with little knowledge, it is e�cient

to induce them to omit and thereby to reveal their low ability. In addition, the

3E(s̃; p̄) = p̄+ (1− p̄)θ. Using De�nition (2) of p̄ with λ = 1: E(s̃; p̄) = (1− θ)γ − θ
1− θ

+ θ = γ.

4Develop (10): sb(γ̂; p̄)−mse(θ̂; p̄) =
(
γ̂ − s(p̄)

)2 − (E(s̃; p̄)− s(p̄)
)2 −V (s̃; p̄), then use (12).
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mark for omission is biased above omitters' average ability: γ̂ > s̄(p) (See Proof

of Proposition 3). This illustrates the double role of the marks in presence of

endogenous choice between selection and omission. The mark for omission not only

provides an estimation of omitters' abilities but also gives extra incentives to omit.

As the number of items in the test increases, the score becomes more accurate. The

optimal subset of omitters shrinks and the bias applied to the mark for omission

vanishes. At the limit, only the least able omit.

Whether the penalty for wrong answer is below or above the notional mark θ∗

is ambiguous. On the one hand, θ > θ∗ lowers the error variance for an exogenous

proportion of omitters, as explained in subsection 3.1. On the other hand, θ < θ∗

encourages omission which reduces measurement errors for low able examinees.

Simulations in next section shows that the variance minimization argument will

generally prevail (θ̂ > θ∗).

Note that, although omission is an e�cient way of reducing estimators variance,

it is still subject to a trade-o� between two types of measurement errors. Pooling

too many omitters would not signal much information about their true ability (the

variance term (6) would be large).

4 Simulated scoring

This section presents numerical results from the statistical model of scoring with

omission, loss aversion and tests of �nite size.

4.1 Simulation strategy

Regarding risk preferences, Tversky and Kahneman (1992) estimate a loss aversion

coe�cient λ = 2.25 in Cumulative prospect theory. Since it not entirely clear

how a parameter estimated from choices involving monetary outcomes translates

17



to the context of grades, three plausible levels of loss aversion are considered: loss

neutrality (λ = 1), moderate loss aversion (λ = 1.5) and strong loss aversion (λ =

2.5).5

Actual ability distributions are expected to vary with test's di�culty relative

to examinees' pro�ciency. Some distribution may be U-shaped with two modes

close to the bounds (absence of knowledge and perfect ability). Others may be

bell-shaped with a higher proportion of examinees around mean ability. Estimating

the ability distribution from real tests is beyond the scope of this article. Without

population and exam-speci�c information, I choose a simple uniform distribution

over the space of ability [p0, 1].

The MSE (4) is computed over a double grid of values for parameters θ ∈ [θ, θ∗]

and p̄ ∈ [1/m, 1]. The mark γ is retrieved for each couple (θ, p̄) by the condition

γ = p̄ + (1 − p̄)λθ. The two grids are composed of 2500 points each, so that

25002 = 6, 250, 000 di�erent values of MSE are computed. The e�cient marks

correspond to the lowest value calculated.

I use as a metric of �tness the root mean square error (RMSE), the geometric

mean of measurement errors for all examinees:

RMSE(γ, θ) =

√∫ p̄

p0

(
γ − s(p)

)2
f(p)dp+

∫ 1

p̄

E
(
(s̃− s(p))2

)
f(p)dp

I also compute the bias on omitters' score γ̂− s̄(p) (see its expression (5)), which

informs about to what extent omitters' ability estimator is distorted to encourage

(if positive) or dissuade (if negative) omission. The incentives to omit are measured

by the mark di�erential γ − θ.
5Mistakes could be positively marked (θ > 0) in theory. Wrong answers would still be edited

as a loss by examinees, i.e. λ ∈ (0, 1). This situation never happens in simulations.
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4.2 Baseline results

I �rst study a baseline model in which various numbers of items (n = 1, 5, 10, 20,

40, 80, 200, ∞) are considered. Each item has m = 3 options. True scores s(p) are

computed given a notional mark correcting for pure guessing: θ∗ = −1/(m − 1).

The loss aversion coe�cient is set to 1.5.

Table 7 in Appendix A presents the e�cient marks and main statistics in func-

tion of test's size n for the baseline calibration. In addition, Figure 1 in Appendix

B shows how γ̂ varies with n. Two distinct scoring strategies emerge in function

of test's size. When the number of items is below a threshold (less than 170 in

Figure 1) omission is encouraged to palliate estimation inaccuracy of less able's

ability. The mark for omission is positive and above average omitters' ability (see

omission bias in table 7). It gradually decreases to around 0.1 before jumping to

negative values. Figure 2 shows that the proportion of omitters is also decreasing

with n with a sudden fall to zero. The mark di�erential γ̂ − θ̂, which measures the

incentives to omit, drops from 0.6 to 0.33. It is therefore e�cient to force selection

when the test has a su�cient number of items.

Except in the extreme case n = 1 in which more than 80% of examinees omit,

the e�cient penalty θ̂ is greater than the notional mark θ∗ (Table 7), i.e. the penalty

is milder than what prescribes a mere correction for guessing. It lies nevertheless

in the close neighborhood of the notional mark, suggesting that a �xed penalty

equal to the notional mark might prove a good approximation of the e�cient rule

(more in Subsection 4.5). The mark for omission is more sensitive to test's size n

than the penalty for wrong answers. The behavior of the low able is indeed better

targeted by the mark for omission than by the penalty which impacts all examinees,

including the most pro�cient who never omit.
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4.3 E�cient scoring and risk preferences

To what extent risk preferences interact with the scoring rule and estimators' ef-

�ciency? Loss averse examinees overweight utility loss when they get wrong and

tend to abstain more often. The consequences for omission are however ambivalent

when the scoring rule is e�cient (see Table 1). On the one hand, the proportion of

omitters increases with loss aversion. On the other hand, the stronger loss averse

they are, the smaller the number of items above which omission is dissuaded.6

Table 1: E�cient proportion of omitters (%) and loss aversion

Number of items (n) 1 5 10 20 40 80 200 ∞

Risk neutrality (λ = 1) 43.4 26.0 19.6 14.4 10.5 7.6 4.9 0.00

Moderate loss aversion (λ = 1.5) 83.5 39.4 30.6 24.9 21.1 18.6 0.00 0.00

Strong loss aversion (λ = 2.5) 85.7 46.8 38.0 32.8 29.9 0.00 0.00 0.00

Model: m = 3 options per item,the notional mark corrects for pure guessing (θ∗ =

−0.50). See Tables 6, 7 and 8 for the detailed statistics. Reading: 26% of risk

neutral examinees omit in an e�cient test with 5 items.

To understand why, recall that the proportion of omitters depends on the incen-

tives to omit given by the marks. The more loss averse examinees are, the lower the

mark for omission needed to achieve a desired share of omitters. For a su�ciently

strong loss aversion, γ is below most true scores s(p). Lowering it further raises

measurement errors sb(γ; p). Hence when loss aversion strengthens, the threshold

test's size for which selection by low able examinees is e�cient, is lowered.

Loss aversion promotes to some extent e�ciency, as shown by root mean squared

errors reported in Table 2. Errors are decreasing with loss aversion for tests with

6Simulations show that omission is discouraged for n > 171 if examinees are moderately loss

averse, and n > 57 if they are strongly loss averse. Some examinees still omit for n = 200 in case

of risk neutrality.
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a limited number of items n ≤ 40. There are no visible di�erences for tests with

larger n.

Table 2: Root mean squared error (RMSE) and loss aversion

Number of items (n) 1 5 10 20 40 80 200 ∞

Risk neutrality (λ = 1) 0.406 0.241 0.181 0.133 0.097 0.070 0.045 0.00

Moderate loss aversion (λ = 1.5) 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.00

Strong loss aversion (λ = 2.5) 0.324 0.196 0.151 0.119 0.097 0.072 0.046 0.00

Model: m = 3 options per item, notional mark corrects for pure guessing (θ∗ =

−0.50). See Tables 6, 7 and 8 for the detailed statistics.

To get the intuition, recall that if examinees are risk neutral and the number

of items is �nite, it is e�cient to induce the less able to omit (see Subsection 3.3).

If examinees are loss averse, the less able spontaneously omit without the need to

distort the marks.

4.4 E�cient scoring and test length

How many items should be included in a test? How many options should be pro-

posed in every item? Is there a trade-o� between the two margins? While the �rst

question has been rarely investigated in the psychometric literature,7 the optimal

number of options per item has been discussed at length (see Rodriguez (2005) for

a survey).

Increasing the number of options generally increases the di�culty of the item

(assuming all alternatives are plausible), which increases the likelihood that a test-

taker will select a distractor item. Pure guessing becomes more hazardous. At the

7Burton and Miller (1999) is an exception.
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other end of the distribution, perfectly informed examinees select the right option

whatever the number of distractors. This suggests that examinees with partial

knowledge are expected to be confused by more distractors, but less so they are

more able.

Increasing the number of options from m to m′ changes the success probability

of pure guessing and therefore minimal ability from p0 = 1/m to p′0 = 1/m′ < p0.

Let us consider an examinee whose ability is p < 1 with m options and p′ < p

with m′ > m options. Assuming that examinees' relative standings remain the

same whatever the number of distractors: F (p′) = F (p), stretching the interval of

probability from [p0, 1] to [p′0, 1] mechanically reduces the probability of a correct

answer whatever the actual distribution of ability.

In the baseline model with a uniform ability distribution, the assumption F (p′) =

F (p) gives p′ in function of p, given m and m′, or p0 and p
′
0:

p′ = p′0 +
1− p′0
1− p0

(p− p0)

Figure 3 plots examinees abilities in function of their relative rank for tests

with two and �ve options per item. In accordance with intuition, the more able

an examinee, the less a�ected by the inclusion of additional options per item. For

instance, low able examinees whose rank is F (p) = 0.1 have 55% chance of correctly

picking the right answer with two options, and only 28% with �ve options. At the

other end, examinees whose rank F (p) is 0.9 have 95% chance of success with two

options, and still 92% with �ve options.

Figure 4 shows how fast the root mean squared error (RMSE) declines with the

number of items for m = 2 and 5 options per item. E�ciency gains from additional

items are large for tests with few items, less than 25, whatever the number of

options per item. The gain then rapidly decelerates and slowly converges to zero.

It is around 0.05 for n = 200 and m = 3, and still 0.03 for n = 1000. The �gure

suggests that tests with more than 100 items do not seem to be worth devising,

considering the time spent to construct and administer them.
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Since the inclusion of additional distractors reduces the in�uence of blind or

educated guessing, the RMSE in Figure 4 are logically decreasing with the number

of options for a given number of items. Increasing the number of options from 2 to

5 signi�cantly reduces the RMSE, even for large n where it becomes hard to reduce

measurement errors by adding new items. The gains from increasing the number

of options from 3 to 4 are smaller, and even so from 4 to 5 (see Table 3).8

Table 3: Root mean squared errors (RMSE) and number of options per item

Number of items (n) 1 5 10 20 40 80 200 ∞

RMSE with 2 options 0.407 0.244 0.186 0.140 0.106 0.080 0.057 0.00

RMSE with 3 options 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.00

RMSE with 4 options 0.371 0.211 0.156 0.114 0.083 0.061 0.041 0.00

RMSE with 5 options 0.365 0.205 0.151 0.110 0.080 0.058 0.038 0.00

Model: notional mark corrects for pure guessing (θ∗ = −1/(m− 1)), moderate loss

aversion (λ = 1.5). RMSE are extracted from Tables 9 (2 options), 7 (3 options),

10 (4 options) and 11 (5 options).

One may wonder whether creating new items might be preferable to devising

additional options, given a �xed number of options summed over all items. This

issue has practical relevance insofar as the total testing time is not extensible and is

increasing with the number of options reviewed.9 To check this point, we compare

tests with varying number of items and options while keeping the total number of

options constant (100).

Table 4 shows that the RMSE hardly varies with the test composition. It is

almost equivalent to administer a test with 50 items and two options or a test

with 20 items and 5 options. The result rests however on the assumption that

8See Burton (2001) for similar conclusions.
9See Budescu and Nevo (1985) for a discussion.
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Table 4: Root mean squared errors (RMSE) with 100 options

Number of options per item (m) 2 3 4 5

Number of items (n) 50 33 25 20

RMSE 0.096 0.098 0.103 0.110

Model: notional mark corrects for pure guessing (θ∗ = −1/(m− 1)), moderate loss

aversion (λ = 1.5). The total number of of options (number of items × number of

options per item) is constant and equal to 100. See Table 12 for detailed statistics.

the test-maker is in capacity to �nd as many as four plausible distractors or up to

50 di�erent items. The consequences of decreasingly e�ective distractors with the

number of options per item are not explored here. Likewise, including more items

has the potential to cover more content, a bene�t not investigated here.

4.5 Quasi-e�cient scoring

Quantitative analyses have shown that e�cient penalty θ̂ does not deviate much

from notional mark θ∗ for n > 5 items (see Tables 6 to 11). In the baseline model,

the e�cient penalty is close to the notional mark (about 0.10 points below for n = 10

to 40 and around 0.01 or 0.02 below for n ≥ 80 (Table 7). This suggests that a

simpli�ed scoring rule with a �xed penalty could provide a satisfactory estimation

of examinees' abilities. To check this possibility, scoring rules with θ = θ∗ are

compared to fully e�cient scoring rules in the baseline calibration.

The two scoring rules produce similar result. The penalty θ is moderately higher

than the e�cient penalty. The mark for omission is also slightly higher so that the

incentives to omit are globally preserved. The di�erential marks γ − θ are similar,

and so are the proportion of omitters. Overall, the RMSE are very close. The

simpli�ed scoring rule is a reasonable approximation of the fully e�cient rule.
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Table 5: Root mean squared errors (RMSE) with quasi-e�cient scoring

Number of items (n) 1 5 10 20 40 80 200 ∞

E�cient scoring 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.000

Quasi-e�cient scoring 0.383 0.221 0.166 0.123 0.091 0.069 0.046 0.000

Model: 3 options per item and moderate loss aversion (λ = 1.5). The notional mark

corrects for pure guessing (θ∗ = −0.50) in the e�cient scoring model. See Table 7

for detailed statistics. Quasi-e�cient scoring: the penalty is �xed (θ = −0.50). See

Table 13 for detailed statistics.

5 Relation to existing scoring methods

The model sheds lights on the e�ciency of the two most used scoring methods, num-

ber right scoring (NRS) and formula scoring (FS). NRS simply counts the number

of right selections and divides the sum by the total number of items. Omitted items

and wrong selections count for zero (θ, γ = 0). A critic often made to the method

is that examinees selecting options at random obtain a positive expected score in

expectation equal to 1/m. FS also sets γ = 0 but imposes a penalty for incorrect

selection equal to −1/(m − 1). The formula equalizes the expected scores of pure

guessing and omission as shown in (1) (Thurstone, 1919, Holzinger, 1924).

The superiority of one of those rules to the other is still debated in the psy-

chometric literature. By implementing negative marking, FS encourages omission,

which increases reliability (Lord, 1975, Mattson, 1975, Burton, 2001). Some au-

thors have argued that FS not only measures the mastery of domain knowledge but

also re�ects examinees' answering strategies and risk-taking behavior (e.g., Votaw,

1936; Frary, 1988; Budescu and Bar-Hillel, 1993). NRS provides more incentives to

answer all questions, which minimizes this type of bias.

The main shortcomings of NRS and FS compared to the present model is the

way they treat omission. The marks are not adjusted for �nite sample to induce
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su�cient omissions when the number of items is not large. They both set the mark

for omission to zero, which is not e�cient whatever test's size (see Figure 1). By

setting the mark di�erential γ − θ to zero, NRS dissuades omission, which is only

e�cient for large tests. FS provides more incentives to omit but only by raising

the penalty for incorrect answer. To the contrary, the model shows that for a

broad range of test's size, the mark for omission is strictly positive as it ful�lls two

functions: partial knowledge is credited and omission is encouraged.

Whatever the method, the marks in FS and NRS are not derived from an explicit

estimation model. For instance, the correction for guessing made in FS starts from

the assumption that ignorant examinees choose to answer all items at random. The

assumption is not consistent with the present model according to which examinees

with insu�cient knowledge should be induced to omit, not to answer. This implies

that the targeted mark assigned to fully ignorant examinees is not zero but is strictly

positive.

6 Conclusion

Three main lessons can be drawn from the scoring model. First, a test-maker should

include a large number of items when feasible to exploit the law of large numbers.

Including additional items proves an e�ective way to enhance score e�ciency, es-

pecially for tests with a limited number of items. Numerical simulations suggest a

number greater than 40 and as much as 100. Raising the number of options per

item is another way to improve estimation, especially from 2 options (true/false

type items), to 3 options. Proposing more than 3 options reduces measurement

errors to a lesser extent. Moreover, the literature points to the di�culty of writing

more than two plausible distractors (Rodriguez, 2005).

Second, e�ciency dictates to target a decreasing proportion of omitters with

test length. If the number of items is large, ability is generally better estimated
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by selection than omission. Selection may be forced by setting a negative mark

for omission. If the number of items is limited, omission may be encouraged by

a positive mark. The fewer items, the more omission needed and the higher the

mark. The resulting proportion of omitters is quite signi�cant in small tests. The

instructions given to examinees should be consistent with the scoring strategy. If the

number of items is small, examinees could be encouraged to omit. In the contrary

case, they could be instructed to answer all questions even if they are unsure about

the correct answer.

Third, the behavior of low able examinees is better targeted by the mark for

omission than by the penalty for wrong answers. A �xed penalty is a satisfactory

and easy-to-implement second best rule. The �nding reformulates the longstanding

debate about the relative advantages of Formula scoring and Number right scoring

which exclusively focuses on the best value that the mark for wrong answers should

take.

The model has made a few simplifying assumptions which implications for the

estimation strategy could be interesting to investigate in the future. First, experi-

mental studies in psychology suggest that people are generally overcon�dent about

their own knowledge (e.g., Keren, 1991; Yates, 1990). Overcon�dence reduces the

omission rate and may impact estimation e�ciency, especially if the tendency cor-

relates with ability (Lichtenstein and Bishho�, 1977; Heath and Tversky, 1991).

A related issue is how to score misinformation, which arises when examinees have

erroneous knowledge (Burton, 2004). Last, the tests could be more realistically

modeled by considering items with varying di�culty. Examinees' probability of

being right and their incentives to omit would �uctuate across items. It could then

be interesting to adapt the marks for mistakes and omissions with item di�culty.
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E�cient scoring and risk preferences
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Table 6: Scoring properties with risk neutrality (λ = 1)

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ 0.00 −0.36 −0.43 −0.46 −0.48 −0.49 −0.50 −0.50

γ̂ 0.62 0.33 0.23 0.17 0.12 0.08 0.05 0.00

γ̂ − θ̂ 0.62 0.7 0.66 0.63 0.60 0.57 0.55 0.50

100
(
γ̂ − s̄(p)) 40.6 19.7 13.6 9.31 6.36 4.36 2.67 0.00

Omitters (%) 43.4 26.0 19.6 14.4 10.5 7.6 4.9 0.00

RMSE 0.406 0.241 0.181 0.133 0.097 0.070 0.045 0.000

Model: notional penalty corrects for pure guessing (θ∗ = −0.50), 3 options per

item. θ̂: e�cient mark for wrong selections. γ̂: e�cient mark for omission. γ̂ − θ̂
measures the incentives to omit. 100

(
γ̂ − s̄(p)) is omission bias with s̄(p) average

omitters' ability. Omitters (%): share of examinees who omit. RMSE: root mean

squared error. For n =∞, γ̂ is the highest mark inducing all examinees to answer

(any lower value would also be e�cient).

Number of options

Scoring properties with 3 options per item: See Table 7.
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Table 7: Scoring properties with moderate loss aversion (λ = 1.5)

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.79 −0.48 −0.46 −0.45 −0.45 −0.46 −0.49 −0.50

γ̂ 0.59 0.30 0.22 0.16 0.11 0.08 −0.16 −0.17

γ̂ − θ̂ 2.39 0.78 0.68 0.61 0.57 0.54 0.33 0.33

100
(
γ̂ − s̄(p)) 17.7 10.81 6.6 3.3 1.0 −0.7 0.00 0.00

Omitters (%) 83.5 39.4 30.6 24.9 21.1 18.6 0.00 0.00

RMSE 0.386 0.221 0.166 0.122 0.089 0.066 0.046 0.000

Model: notional penalty corrects for pure guessing (θ∗ = −0.50), 3 options per

item. θ̂: e�cient mark for wrong selection. γ̂: e�cient mark for omission. γ̂ − θ̂
measures the incentives to omit. 100

(
γ̂ − s̄(p)) is omission bias with s̄(p) average

omitters' ability. Omitters (%): share of examinees who omit. RMSE: root mean

squared error. For n ≥ 200, γ̂ is the highest mark inducing all examinees to answer

(any lower value would also be e�cient).

Quasi-e�cient scoring
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Table 8: Scoring properties with strong loss aversion (λ = 2.5)

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.64 −0.41 −0.36 −0.35 −0.34 −0.48 −0.49 −0.50

γ̂ 0.51 0.28 0.21 0.16 0.14 −0.46 −0.49 −0.50

γ̂ − θ̂ 2.15 0.70 0.57 0.51 0.48 0.02 0.00 0.00

100
(
γ̂ − s̄(p)) 8.49 4.44 2.01 0.05 −1.27 0.00 0.00 0.00

Omitters (%) 85.7 46.8 38.0 32.8 29.9 0.00 0.00 0.00

RMSE 0.324 0.196 0.151 0.119 0.097 0.072 0.046 0.000

Model: notional penalty corrects for pure guessing (θ∗ = −0.50), 3 options per

item. θ̂: e�cient mark for wrong selection. γ̂ − θ̂ measures the incentives to omit.

100
(
γ̂ − s̄(p)) is omission bias with s̄(p) average omitters' ability. Omitters (%):

share of examinees who omit. RMSE: root mean squarer error. For n ≥ 80, γ̂ is

the highest mark inducing all examinees to answer (any lower value would also be

e�cient).

Appendix B Figures
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Table 9: Scoring properties with 2 options per item

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −3.2 −0.96 −0.91 −0.90 −0.90 −0.90 −0.98 −1

γ̂ 0.64 0.35 0.26 0.19 0.15 0.11 −0.24 −0.25

γ̂ − θ̂ 3.90 1.31 1.18 1.10 1.04 1.00 0.74 0.75

100
(
γ̂ − s̄(p)) 19.7 11.9 7.35 3.70 0.98 −0.87 0.00 0.00

Omitters (%) 87.6 47.0 37.8 31.5 27.3 24.5 0.00 0.000

RMSE 0.407 0.244 0.186 0.140 0.106 0.080 0.057 0.00

Model: notional mark corrects for pure guessing (θ∗ = −1), moderate loss aversion

(λ = 1.5). θ̂: e�cient mark for incorrect selection. γ̂: e�cient mark for omission.

γ̂ − θ̂ measures the incentives to omit. 100
(
γ̂ − s̄(p)) is omission bias with s̄(p)

average omitters' ability. Omitters (%): share of examinees who omit. RMSE: root

mean square error. For n ≥ 200, γ̂ is the highest mark inducing all examinees to

answer (any lower value would also be e�cient).
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Table 10: Scoring properties with 4 options per item

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.38 −0.31 −0.30 −0.30 −0.30 −0.31 −0.33 −0.33

γ̂ 0.58 0.28 0.20 0.14 0.10 0.07 −0.12 −0.12

γ̂ − θ̂ 1.96 0.59 0.50 0.44 0.40 0.38 0.21 0.21

100
(
γ̂ − s̄(p)) 16.9 10.7 6.58 3.42 1.17 −0.36 0.00 0.00

Omitters (%) 81.6 34.8 26.4 21.1 17.7 15.3 0.00 0.00

RMSE 0.371 0.211 0.156 0.114 0.083 0.061 0.041 0.000

Model: notional mark corrects for pure guessing (θ∗ = −0.33), moderate loss aver-

sion (λ = 1.5). θ̂: e�cient mark for incorrect selection. γ̂: e�cient mark for

omission. γ̂ − θ̂ measures the incentives to omit. 100
(
γ̂ − s̄(p)) is omission bias

with s̄(p) average omitters' ability. Omitters (%): share of examinees who omit.

RMSE: root mean square error. For n ≥ 200, γ̂ is the highest mark inducing all

examinees to answer (any lower value would also be e�cient).
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Table 11: Scoring properties with 5 options per item

Number of items (n) 1 5 10 20 40 80 200 ∞

θ̂ −1.18 −0.23 −0.22 −0.23 −0.23 −0.23 −0.23 −0.25

γ̂ 0.57 0.26 0.18 0.13 0.09 0.06 0.04 −0.1

γ̂ − θ̂ 1.75 0.49 0.41 0.35 0.32 0.38 0.28 0.15

100
(
γ̂ − s̄(p)) 16.5 10.7 6.63 3.52 1.35 −0.11 −1.30 0.00

Omitters (%) 80.5 31.4 23.4 18.5 15.3 13.2 11.42 0.00

RMSE 0.365 0.205 0.151 0.110 0.080 0.058 0.038 0.000

Model: notional mark corrects for pure guessing (θ∗ = −0.25), moderate loss aver-

sion (λ = 1.5). θ̂: e�cient mark for incorrect selection. γ̂: e�cient mark for

omission. γ̂ − θ̂ measures the incentives to omit. Omitters (%): share of exami-

nees who omit. 100
(
γ̂ − s̄(p)) is omission bias with s̄(p) average omitters' ability.

RMSE: root mean square deviation. For n > 200, γ̂ is the highest mark inducing

all examinees to answer (any lower value would also be e�cient).
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Table 12: E�ciency and number of options for a test with a total of 100 options

Number of options per item (m) 2 3 4 5

Number of items (n) 50 33 25 20

θ̂ −0.90 −0.45 −0.30 −0.23

γ̂ 0.13 0.13 0.13 0.13

γ̂ − θ̂ 1.03 0.58 0.43 0.36

100
(
γ̂ − s̄(p)) 0.31 1.54 2.60 3.52

Omitters (%) 26.1 22.0 19.9 18.5

RMSE 0.096 0.098 0.103 0.110

Model: moderate loss aversion (λ = 1.5). All tests have approximately a total of

100 options. γ̂− θ̂ measures incentives to omit. 100
(
γ̂− s̄(p)) is omission bias with

s̄(p) average omitters' ability. Omitters (%): share of examinees who omit. RMSE:

root mean square error.

Figure 1: E�cient mark for omission and number of items (horizontal line)

Model: 3 options per item, notional mark corrects for pure guessing (θ∗ = −0.50),

moderate loss aversion (λ = 1.5).
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Table 13: Scoring properties with a �xed penalty

Number of items (n) 1 5 10 20 40 80 200 ∞

γ̂ 0.59 0.31 0.22 0.16 0.12 0.09 −0.17 −0.17

γ̂ − θ 1.09 0.81 0.72 0.66 0.62 0.59 0.33 0.33

100
(
γ̂ − s̄(p)) 26.5 10.3 5.56 2.09 −0.31 −1.90 0.00 0.00

Omitters (%) 64.8 40.6 33.3 28.1 24.5 22.2 0.00 0.00

RMSE 0.383 0.221 0.166 0.123 0.091 0.069 0.046 0.000

Model: moderate loss aversion (λ = 1.5), 3 options per item. Quasi-e�cient scoring:

the penalty corrects for pure guessing (θ = θ∗ = −0.50), but is not adjusted for

�nite sample; γ̂: e�cient mark for omission. γ̂− θ̂ measures the incentives to omit.

100
(
γ̂ − s̄(p)) is omission bias with s̄(p) average omitters' ability. Omitters (%):

share of examinees who omit. RMSE: root mean squared error. For n ≥ 200, γ̂ is

the highest mark inducing all examinees to answer (any lower value would also be

e�cient).
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Figure 2: Proportion of omitters and number of items (horizontal line)

Model: 3 options per item, notional mark corrects for pure guessing (θ∗ = −0.50),

moderate loss aversion (λ = 1.5).
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Figure 3: Examinees' rank according to their success probability p

Notes. p is the probability of selecting the right option. Solid line: success prob-

abilities for m = 5 options. Dotted line: success probabilities for m = 2 options.

Rank is examinees' relative standings as measured by F (p). Reading: with �ve

options (solid line), an examinee with median ability (F (p) = 0.5) has 0.6% chance

of selecting the right option.
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Figure 4: Root mean squared errors (RMSE) for 2 and 5 options per item

Model: moderate loss aversion (λ = 1.5). Dotted line: RMSE for m = 2 options

and θ∗ = −1. Solid line: RMSE for m = 5 options and θ∗ = −0.25.
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