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Abstract

This paper introduces discrete automatic market makers (DAMMs), a
general family of automatic market makers characterized by a piecewise
linear pricing curve which can approximate any continuous curves with
arbitrary accuracy. Optimal sizes are derived from an infinite horizon
utility-based convex problem. Our results back the common practice of
investing liquidity where the market maker expects the price to fluctuate,
with two qualifications. First, the degree of liquidity concentration heavily
depends on market maker’s degree of risk aversion and will be typically
different from the price distribution. Second, a lower fraction of capital
will be allocated towards price ranges far from current price as it takes
time for the price to move to remote ranges and put the liquidity at work.
The higher the opportunity costs of keeping liquidity idle, the higher the
investment decay relative to current price.
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Introduction

Decentralized finance is changing the way financial services are delivered by al-

lowing users to access a wide range of financial products without the need for

a third-party intermediary (Schär, 2021). One of the catalysts driving this new

model of finance was the invention of automated market makers (AMMs), which

provide an efficient and decentralized means of exchanging digital assets. An

AMM is an algorithmic protocol that uses an automated pricing mechanism to

facilitate liquidity for digital assets on public blockchains like Ethereum. They

act like a two-sided platforms in which traders interact with liquidity providers

(LPs) through a pricing curve which determines the price at which the two assets

in the pool are exchanged. On one side, LPs provide capital by depositing the

assets in a smart contract that implements the trading logic. They receive a

share of trading fees proportional to their contribution to the pool of assets. On

the other side, traders tap into the pool by exchanging one asset for the other

according to an exchange rate which depends on the relative scarcity of the two

assets in the pool.1

AMMs are particularly well fitted to public blockchains characterized by high

latency and storage costs. The algorithmic determination of the exchange rate

greatly simplifies the tasks of trading assets and market making the liquidity.

AMMs eliminate the need for manual quote submission and provide instant liq-

uidity with moderate transaction costs. They make it trivially easy for users to

create new markets and provide liquidity to existing markets. They constitute

nowadays the most liquid trading venues for a large number of digital assets.

Uniswap, the leading AMM on the blockchain Ethereum, has been in 2022 the

venue of 68M transactions totaling $620B in trading volume.
1Prominent AMMs include Curve (Egorov 2019), Balancer (Martinelli and Mushegian,

2019) and Uniswap (Adams, Zinsmeister and Robinson, 2020 and Adams et al., 2021).
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Beyond the wide variety of pricing curves adopted, a key characteristic is

path independence.2 A pricing curve is path independent if each exchange rate

is associated with an invariant quantity of the two assets available in the pool.

It follows that every time the exchange rate returns to a previous level, the

quantities of assets in the pool are also restored. This property is an important

safeguard for AMMs which exchange rate is set without knowledge of the external

market price. This extreme case of asymmetric information (Kyle, 1985) protects

LPs from being out-traded by informed traders and arbitrageurs as long as the

price goes back and forth.

Despite those benefits, the design of AMMs is still rudimentary. Pricing

curves rely on ad-hoc functionals with little relation to optimization models.

Most discussions and implementations have revolved around the curvature degree

of the pricing curve and the spread of the liquidity in relation with price volatility.

Quasi-linear pricing curves are adapted to low-volatility asset pairs (Angeris,

Evans and Chitra, 2020), whereas more convex curves like Uniswap are best

optimized for volatile and long-tail asset pairs (Angeris et al., 2019). Beyond the

degree of curvature, other properties of the pricing curve are hardly studied by

lack of a proper optimization framework. The rapid pace at which new AMMs

go to market outlines the need of better theoretical frameworks to asses their

utility and devise optimal strategies. The lag between practice and theory can

be illustrated by the launch of Uniswap V3 in 2021 which provides LPs with the

breakthrough option of concentrating their liquidity over narrow price ranges.

While this gives LPs the opportunity to actively market make asset pairs, it is

still unclear how to define an optimal market making policy in those markets.
2See Buterin (2017) for applying the concept to AMMs. Path independence is generally

obtained if fees earned by the pool are excluded from the return (Angeris and Chitra, 2020).
Adding fee revenue only strengthens the argument that LPs returns in path independent AMMs
cannot be harmed by price volatility.
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This paper proposes a micro-founded automated market making model which

allows to derive the optimal pricing curve within the family of path indepen-

dent AMMs. We introduce discrete AMMs characterized by a piecewise linear

curve and which can approximate any continuous curves with arbitrary accuracy.

Given market maker’s price expectations, risk aversion and time preferences, or-

der sizes maximize her intertemporal discounted utility.3 Our results back the

common practice of investing capital where the market maker expects the price

to fluctuate, with two qualifications. First, the degree of liquidity concentration

will heavily depend on the market maker’s degree of risk aversion. For this rea-

son, it will be typically different from the price distribution. On top of those

factors, a lower fraction of the capital will be allocated towards price ranges far

from current price as it takes time for the price to move to remote ranges and

put the liquidity at work. The higher the opportunity costs of keeping liquidity

idle, the higher the investment decay relative to current price.

The recent spectacular growth of AMMs on public blockchains has attracted

academic attention leading to an emergent literature on the functioning of AMMs

and their optimal design. Angeris et al. (2019) presents an early analysis of

Uniswap, and more broadly of constant-product AMMs. Port and Tiruviluamala

(2022) studies new methods to mix existing pricing curves. Wu and McTighe

(2022) introduces a new type of pricing rule, the constant power root market

marker. Those articles rely on specific functionals for the pricing rule. Capponi

and Jia (2021) studies the optimal degree of convexity of the pricing curve which

is modeled as a trade-off between protecting LPs from arbitrage losses and wors-

ening the price impact, which deters volume and reduces trading fees. Neuder et

al. (2021) investigates alternative strategies of liquidity concentration that LPs
3The term market maker may refer to the person who sets the pricing curve of the AMM

at the smart contract level on behalf of liquidity providers, or the investor who market makes
an asset pair for example by providing liquidity in an AMM with concentrated liquidity.
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may follow in Uniswap V3 AMMs. They compute the expected utility derived

from the stream of fees for each strategy and find that the uniform allocation is

near-optimal for risk averse LPs. Fan et al. (2022) also proposes an optimization

framework that translates LPs’ beliefs about future asset valuations into an opti-

mal pricing curve. In both articles, the scope of the results is limited to Uniswap

V3 pricing rules. Goyal et al. (2022) study a more general optimal pricing curve

conditional on a set of beliefs about the price dynamics. Their conclusions rely

on the assumption of risk neutrality as LPs maximize transaction volumes settled

by the AMM. Bergault et al. (2022) study efficient AMMs in the mean-variance

framework when the pricing function can pull price information from a central-

ized exchange. They show that complementing the pricing function with a price

oracle provides more efficient strategies.

The remaining of the paper is organized as follows. Section 2 presents the

market making model and the constraints imposed by path independence. Sec-

tion 3 compares the characteristics of the model with those of traditional contin-

uous AMMs. Section 4 presents the optimality conditions. Section 5 analytically

solves the market making problem with three execution prices. The general prob-

lem with an arbitrary number of prices is numerically solved in Section 6. Section

7 concludes.

1 Market making model

The strategy provides liquidity for a trading pair X/Y and posts bids of size

δx+
n and asks of size δx−n , n = 0, 1, ..., N over a predefined price grid P =

{p0, p1, ..., pN} with p0 < p1 < ... < pN , over which the price is expected to

fluctuate. The AMM cannot short the assets. Asks are posted for every price

belonging to the set P greater than the current price and bids for every price
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inferior to the current price. No orders are posted where the last order has been

filled. For example, at price pn, the two closest orders are: (i) an ask at price

pn+1 of size δx−n+1 and (ii) a bid at price pn−1 of size δx+
n−1. If the price goes up

to pn+1, the ask is taken first. The two closest orders are now: (i) a bid at price

pn of size δx+
n and (ii) an ask at price pn+2 of size δx+

n+2. If the price returns to

pn, the bid is taken first and so forth.

The strategy is path independent if a fixed relation exists between every price

levels belonging to the set P and AMM’s reserves in X and Y . Suppose that

the AMM’s exchange rate starts from p, then fluctuates when investors’ and

arbitrageurs’ trade with the AMM’s pool. If the exchange rate returns to p,

AMMs reserves will return to their initial value as well.

A path independent strategy is defined over order pairs (δx+
n , δx

−
n+1) com-

posed of a bid at price pn and an ask at a higher price pn+1. They always

produce a positive profit when they are sequentially filled provided they have

the same size. A path independent strategy satisfies:

H1 δx+
n = δx−n+1 for all n ∈ {0, 1, 2, ..., N − 1}.

H2 Order pair’s profit bn = −pnδx+
n +pn+1δx

−
n+1 is not reinvested in the pool.

The profit bn associated with the filling of the order pair comes from selling

at pn+1 and buying at the lower price pn.

To prove path independence based on H1 and H2, let us start from price pn,

n ∈ {0, 1, ..., N − 1}. If the price increases to pn+q, q = 1, ...N + 1 − n, then
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returns to pn, AMM’s new balances are:

x′n = xn −
q∑
j=1

(δx−n+j + δx+
n+j−1)

y′n = yn +
q∑
j=1

(pn+jδx
−
n+j − pn+j−1δx

+
n+j−1)

= yn +
q∑
j=1

pn+j(δx−n+j − δx+
n+j−1) +

q∑
j=1

bn+j−1

The equalities x′n = xn and y′n = yn obtain if H1 and H2 are satisfied.

The proof of the invariance when the price decreases before returning to pn is

symmetric.

The quantities held by the AMM for each execution price belonging to P can

be expressed under H1 and H2 as:

xn =
N−1∑
i=n

δx+
i (1)

yn = wN −
N−1∑
i=n

piδx
+
i

In particular, AMM’s budget is wN = yN when the price reaches its upper

bound, as all assets X are sold (recall that by assumption the price cannot

increase anymore at this level).

2 Comparison with continuous AMMs

The strategy leads to a generalized family of path independent AMMs called

discrete AMMs (DAMMs). In classical continuous AMMs, traders are allowed to

exchange any quantities of the two assets insofar as a tight relationship between

the quantities x and y held by the contract is preserved:

x −→ y = f(x)
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with f the AMM’s pricing curve, a continuously differentiable decreasing func-

tion. An example of curve is displayed in Fig. 1. An AMM following this rule is

bound to sell or buy δx vs. δy in a way preserving the constraint:

x+ δx −→ y − δy = f(x+ δx)

<Insert Fig. 1>

If the AMM has trading fees, the relation is invariant if the fees are excluded

from the pool, just like the benefits are extracted from the discrete AMM pool

in H2. A popular pricing curve is defined by the constant product xy = k. Re-

serves increase or decrease in the pool in a way that keeps constant the parameter

k or the geometric mean √xy (Evans, 2020). The exchange rate is constantly

realigned with the external market price thanks to arbitrageurs selling the ex-

pensive asset against the cheap one. Under a frictionless no-arbitrage condition,

the AMM exchange rate is equal to the market price at the margin (see Fig. 2):

p = −dy
dx

= −f ′(x)

<Insert Fig. 2>

A strict relation between the quantities held in the two assets also exists in

a DAMM for every price belonging to the set P :

xn =
N−1∑
i=n

δx+
i −→ yn = wN −

N−1∑
i=n

piδx
+
i

where the relation between the two quantities is step-wise decreasing. The inter-

nal exchange rate is also aligned with market price but only intermittently. The

relation between the quantities held by the DAMM is graphically represented

with three prices in Fig. 3.
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<Insert Fig. 3>

In Fig 4, the relation between xn and yn is composed of three linear segments.

The slope of each segment corresponds to a price belonging to the set P =

{p0, p1, p2}. The total liquidity offered and demanded at each price is given by

the length of the corresponding segment measured on the two axes.

<Insert Fig. 4>

The market price will typically be distinct from the prices included in the set

P . This is the case of p in the figure, which lies between p1 and p2. If the price

decreases below p1, arbitrageurs buy the depreciating asset X. They take y2−y1

from the AMM in exchange of x2 − x1.

A major difference with continuous AMMs is that the relation between the

two assets is not constrained by a functional but by a step-wise relation which

can approximate any continuous function with arbitrary accuracy provided the

price grid is fine enough.4

3 Optimality conditions

This section presents the maximization problem faced by the market maker (MM)

given the set of execution prices P and the price dynamics.
4Also, a DAMM earns the spread when the price goes back and forth as the step between

any two prices is non-zero. Continuous AMMs apply a trading fee to earn a local spread.
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3.1 Price dynamics

The price is assumed to follow an ergodic Markov chain over execution prices

P = {p1, ..., pN}. Starting from pn ∈ P , the probability of the price going down

to pn−1 is π−n , up to pn+1 π
+
n and staying at pn πs = 1−π−n −π+

n . The price cannot

instantly jump to higher or lower price levels, so only the three main diagonals

of the transition matrix are non-zero. Also p0 cannot go down (π−0 = 0) and pN

cannot go up (π+
N = 0).

Starting at pn, the profit is extracted every time the price transits to pn+1 and

eventually goes back to pn, or moves to pn−1 and after an uncertain number of

periods, goes back to pn. The price sequence is assumed to start at the minimal

price p0. As a result, all price increases initiate or prolong a price loop whereas

all price decreases partially or fully close a loop, locking in a benefit consumed

by the MM.

Figure 5 shows possible price sequences. Starting at p0, the price can only

make clockwise price loops, either short ones (p0 → p1 → p0) or longer ones

(p0 → p1 → p2 → ...). Due to the ergodic naure of the Markov chain and the

infinite horizon, every opening price loops will eventually close and lock in a

profit for the MM.

<Insert Fig. 5>

3.2 Value functions

The MM derives utility u(bn) from benefit bn, with u an increasing, twice continu-

ously differentiable and concave function. Future utility of profit delayed by t pe-

riods is discounted by the factor β ∈ (0, 1). Value functions Vn, n ∈ {0, 1, ..., N},

are intertemporal discounted sum of expected utility of profits. The maximiza-
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tion problem with infinite horizon takes the iterative form:

max
{x+

n ,n=0,...,N−1}
Vn = π−n β

(
Vn−1 + u(bn−1)

)
+ π+

n βVn+1 + πsnβVn (2)

with bn−1 = (pn−pn−1)δx+
n−1. As previously noted, a price decrease is a necessary

and sufficient condition for the MM to earn a profit. An analytical solution is

possible in the special case in which the MM sets three execution prices, which

is now reviewed before addressing the general case.

4 The three-price case

The price transits between three price levels: p0, p1 and p2. To simplify further,

we depart from the general model by assuming that the economy starts at state

1 (not 0) and that the price never stay at the same level more than one period.

Starting at p1, the MM either sells at p2, buy back at p1, or buys at p0 and sells

back at p1. The state transition is presented in Fig. 6.

<Insert Fig. 6>

The profit obtained from buying at p0 and selling at p1 is b0 = (p1 − p0)δx+
0 ,

whereas it is b1 = (p2 − p1)δx+
1 when the MM sells at p2 and buys at p1. MM’s

budget constraint expressed in state 2 is

p1δx
+
1 + p0δx

+
0 = w2

The value function at p1 is:

V1 = π+β2
(
V1 + u(b1)

)
+ π−β2

(
V1 + u(b0)

)

11



with π+ the probability of a clockwise loop p1 → p2 → p1 and π− = 1− π+ the

probability of an anticlockwise loop p1 → p0 → p1. Regrouping the terms:

V1 = β2

1− β2

(
π+u

(
(p2 − p1)δx+

1

)
+ π−u

(
(p1 − p0)δx+

0

))

and injecting the budget constraint δx+
0 = (w2 − p1δx

+
1 )/p0, the optimality con-

dition w.r.t. x+
1 equalizes the expected marginal utility of the capital used in the

two price loops, weighted by their return rates:

p1 − p0

p0
π−u′(b1) = p2 − p1

p1
π+u′(b2) (3)

The MM concentrates the capital where it is the most profitable in expecta-

tion. If the probability π− of an anticlockwise loop is high, all else equal b0 > b1

or δx+
0 > δx+

1 , which means that the MM keeps a large fraction of her reserve in

asset Y at price p1. The MM also concentrates the capital ceteris paribus where

the price return is the highest.

Concentrating capital where it is the most profitable is also riskier. The more

risk averse the MM (the more concave the valuation function u), the more equal

the reserves posted at the two ends of the market.

In the log case u(b) = log(b), the share of capital kept for the two loops

simplifies to:

p0δx
+
0 = π+w2

p1δx
+
1 = (1− π+)w2

In accordance with intuition, the higher the probability of a price decline, the

larger the bid at p0 and the smaller the bid at p1.
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5 Optimal order sizes with an arbitrary number
of prices

This section shows how to compute and simulate optimal order sizes in the

general case with N + 1 price levels.

5.1 Model

Value functions in Eq. (2) can be represented in a matrix form:

V = βΠV + βπ−U

with Π the transition matrix of the Markov chain followed by the price and V

and U the column vectors of the value functions Vn and utility functions u(bn−1).

Value functions can be expressed as linear combinations of period utilities: V =

ΓU with Γ = (I−βΠ)−1βπ−. The sums of utilities are weighted by the coefficients

γtn of the matrix Γ:

V t
n =

N∑
n=1

γtnu(bn−1)

with V t
n the state n = 0, ..., N value function evaluated at state t = 0, ..., N . The

coefficients γtn indicate the discounted probability of each state. The closer to

1, the more likely and temporally closer the profit. Next, the order size δx+
0 is

singled out from the MM’s budget constraint

δx+
0 = wN

p0
−

N−1∑
n=1

pn
p0
δx+

n

and replaced in the value function:

V t
n = γt1u

(
p1 − p0

p0

N−1∑
n=1

(
wN − pnδx+

n

))
+

N−1∑
n=1

γtn+1u
(
(pn+1 − pn)δx+

n

)

Optimality conditions w.r.t. δx+
n , n = 1, ..., N + 1 are:

pn − pn−1

pn−1
γtnu

′
(
(pn − pn−1)δx+

n−1

)
= pn+1 − pn

pn
γtn+1u

′
(
(pn+1 − pn)δx+

n

)
(4)
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which are equivalent to the optimality condition (3) encountered in the three-

price problem, with similar interpretations.

The coefficients γtn and therefore the optimality conditions depend on the

current state t for two reasons. First the probability to go through a price loop

around state n will depend on its position relative to state t. Second, the further

the state n from current state t, the longer the price will take on average to

go through a loop around state n. The utility of the associated benefit will be

more discounted as a result. For those reasons, MM’s preferences will be time

inconsistent: order sizes which are optimal at state t will change after transiting

to another state. Several concepts of rationality coexist in this case (Strotz,

1955). In accordance with the fact that the market making policy is usually

encoded in an immutable smart contract, we assume that the MM can commit

to a state-t optimal policy even when the current state is not t.

5.2 Numerical simulations

MM’s preferences are represented by a constant relative risk aversion utility

function:

u(b) = b1−σ

1− σ

with σ > 0 the coefficient of relative risk aversion. The price grid over which

orders are posted is composed of 46 prices, starting at p0 = 1000 and following

a geometrical sequence pn+1 = 1.025pn with the maximum price p45 equal to

3038. The geometric distribution of prices allows each local price loop to give

the MM the same price return (pn+1 − pn)/pn. Otherwise the MM would have

an incentive to concentrate capital where the return is the highest.

Starting from n, the state can transit to n − 1, n or n + 1 one period later
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but not to lower or higher states. As a result, the 46 × 46 transition matrix

Π has zero values outside the three main diagonals. A symmetric matrix is

used in numerical simulations. Given the probability θ ∈ (0, 1), the transition

probabilities for n ∈ {1, 2, ..., 46} are:

Π[n, n− 1] = Π[n, n+ 1] = θ and Π[n, n] = 1− 2θ

except Π[1, 1] = Π[46, 46] = 2θ.

The stationary price distribution associated with Π indicates where the MM

expects the price to fluctuate on average. The use of a symmetric matrix results

in a uniform stationary distribution with all states having the same stationary

probability 1/(N + 1), whatever the value taken by θ. This eliminates a second

confounding with other factors of size concentration.

To numerically solve optimal order sizes, the value of δx+
0 is arbitrarily fixed

to compute state 0 marginal utility:

U ′0 = γk1
p1 − p0

p0

(
(p1 − p0)δx+

0

)−σ

Then, all other order sizes can be derived by using the optimality condition

(4):

δx+
n = 1

pn+1 − pn

(
pn+1 − pn

pn

γkn+1
U ′0

)1/σ

Last, order sizes are resized to fit the MM’s budget wN = 1000.

5.3 Results

The values taken by the preference parameters in the baseline simulations are σ

= 2 and β = 0.999. Based on a weekly transition, the discount factor is consistent

with a 5.3% annualized return. Value functions V t
n for states n = 0, ..., N are
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evaluated ate state t = 0. As previously noted, the value functions will be

different if the reference state is changed. The transition probability between

states is set to θ = 1/3.

Figure 7 shows the distribution of order sizes pnδx+
n at prices pn and Fig.

8 the corresponding pricing curve. Order size is decreasing with the price de-

spite a uniform stationary distribution. This is due to the interaction of two

effects. First, the MM evaluating value functions at state 0, the higher the exe-

cution price the longer it takes for the market price to move, cross the execution

price and eventually make profitable loops. Before this time, the capital remains

idle, which has an economic opportunity cost captured by the discount factor

β. Second, while concentrating capital over the closest prices is more profitable

in expectation, risk aversion prevents the MM from over-concentrating over this

range. Spreading capital over the full range also benefits from financial diversifi-

cation. Since price loops open and close sequentially, the return from capital at

a given price loop is negatively correlated to the return to other price loops.

Those interpretations are confirmed when parameters’ values are changed.

Fig. 9 shows the distribution of sizes for four different values of the relative

risk aversion parameter σ in the baseline economy (β = 0.999, t = 0 and θ =

1/3). The more risk averse the MM, the more evenly distributed the order

sizes. For moderate risk aversion (σ = 0.5), the capital is strongly skewed in

the neighborhood of the reference state t, where it is the most profitable in

expectation.

Fig. 10 shows the size distribution when the discounting factor β takes the

values 0.99, 0.999 (baseline), 0.9999 and 0.9999 (keeping σ = 2, t = 0 and θ = 1/3

fixed). In accordance with previous intuitions, the higher the MM’s opportunity

cost of time, the more concentrated the price distribution around the current

state. To the opposite, when the MM’s discounting factor tends towards 1, the
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size distribution converges to the stationary price distribution, which is uniform

by assumption. The last configuration constitutes an important benchmark as it

corresponds to the common practice in Uniswap V3-type AMMs to allocate the

capital where the price is believed to fluctuate.

Fig. 11 shows the size distribution for two alternative reference states: t = 23

and t = 46 in the baseline scenario. In both cases, the closer other states are to

the reference state, the higher the order sizes posted by the MM.

Last, Fig. 12 shows the size distribution when the probability of transiting to

an adjacent state is lower (θ = 0.3) and higher (θ = 0.5) compared to the baseline

model (θ = 1/3). As expected, the size distribution is more concentrated around

the reference state when the probability is lower. A lower probability means

that a longer period is needed on average for the market price to move to remote

execution prices, which reduces its profitability once discounted.

6 Conclusion

This paper proposes an optimal utility-based market making model for AMMs

which can adapt to any expected price distribution. Instead of looking for the

best functional, the model adopts a fully non-parametric approach by optimizing

order sizes over a discrete price set. Any continuous pricing curves can then be

approximated with arbitrary accuracy by narrowing the gap between prices at

which orders are posted. The curve can be manually implemented by LPs in

Uniswap-V3-type AMMs which let users concentrate their liquidity where they

wish, or in programmable limit order books in which the strategy can be coded.

Our results back the common practice of allocating the capital proportionally

to where the price is expected to fluctuate, with two caveats. First, how con-
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centrated the capital should be compared to the price distribution is ultimately

a risk-return trade-off. The model allows to relate in a quantitative way MM’s

risk preferences and the degree of concentration. Second, a lower fraction of the

capital should be allocated over price ranges far from current price as it takes

time for the price to move to remote ranges and put the liquidity at work. The

higher the opportunity costs of keeping liquidity idle, the higher the investment

decay relative to current price. Another lesson is that risk averse MM should

allocate a positive amount of capital over the full price range. Paralleling the

result of Samuelson (1969) for financial market, in absence of transaction costs, a

small amount of capital is strictly preferred to zero capital everywhere the price

has a non-zero probability to loop.

The model also allows to reverse engineer a pricing curve to retrieve the

MM’s price distribution given assumptions about time and risk preferences. As

an illustration, Uniswap V2-type AMMs in which the capital is distributed evenly

across all price ranges–from zero to infinity is consistent with an expected price

uniformly distributed over the maximum range and a MM being extremely risk

averse and having a time opportunity cost of zero. Those validity conditions are

hard to justify on empirical grounds.

Although the distribution of order sizes is endogenous, the model takes as

given the price set over which the MM expects the market price to fluctuate.

The question of whether the strategy is best optimized for an arbitrary large

number of execution prices or for a price set with a finite number of prices is

not addressed by the paper. In the first case, the pricing curve would approach

continuous curves found in traditional AMMs, which would open up the issue

of the optimal fee rate that the AMM should apply to remain profitable. In

the second case, the question remains of the optimal spacing of execution prices.

Those unanswered questions are worth being pursued in future studies.
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Figure 1: Continuous pricing curve

Note: The curve shows how much reserve in asset Y the AMM must hold given
its reserve in asset X.

Figure 2: The price as the marginal exchange rate

Note: The slope of the line tangent to the curve is the negative of the marginal
exchange rate between the two assets.
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Figure 3: Piece-wise pricing curve

Note: The piece-wise curve indicates how much reserve in asset Y the AMM
holds given its reserve in asset X

Figure 4: Effects of a price decrease on the quantities held by the AMM

Note: The graphic indicates by how much the reserve in asset Y decreases and
the reserve in asset X increases when the market price moves below p1, from p

to p′.
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Figure 5: Example of price sequences

Figure 6: Value functions with a three-price set
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Figure 7: Distribution of order sizes over the set of execution prices

Parameter values (baseline): σ = 2, β = 0.999, t = 0 and θ = 1/3.

Figure 8: AMM’s pricing curve (baseline)

Notes. The pricing curve indicates how much the market maker holds asset Y
for every quantity held in asset X when exchanging with traders.
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Figure 9: Distribution of order sizes and relative risk aversion (RRA)

(a) Low RRA (σ = 0.5) (b) Baseline RRA (σ = 2)

(c) High RRA (σ = 5) (d) Very high RRA (σ = 20)

Parameter values (baseline): β = 0.999, t = 0 and θ = 1/3.
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Figure 10: Distribution of order sizes and time discounting (TD)

(a) Extremely low TD (β = 0.99999) (b) Low TD (β = 0.9999)

(c) Baseline TD (β = 0.999) (d) High TD (β = 0.99)

Parameter values (baseline): σ = 2, t = 0 and θ = 1/3.
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Figure 11: Distribution of order sizes and reference state

(a) mid-state (t = 23) (b) highest state (t = 46)

Note: The reference state is the state at which the value functions are maximized.
Parameter values (baseline): σ = 2, β = 0.999 and θ = 1/3.

Figure 12: Distribution of order sizes and probability of transiting to a different
state

(a) Low probability (θ = 0.2) (b) High probability (θ = 0.5)

Note: The transition probability θ is the probability of transiting to a higher
state (Π[n, n − 1]) or lower state (Π[n, n + 1]). Parameter values (baseline):
σ = 2, β = 0.999 and t = 0.
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