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Abstract

This article proposes an equilibrium approach to lottery markets in which a �rm

designs an optimal lottery to rank-dependent expected utility (RDU) consumers.

We show that a �nite number of prizes cannot be optimal, unless implausible utility

and probability weighting functions are assumed. We then investigate the condi-

tions under which a probability density function can be optimal. With standard

RDU preferences, this implies a discrete probability on the ticket price, and a con-

tinuous probability on prizes afterwards. Under some preferences consistent with

experimental literature, the optimal lottery follows a power-law distribution, with

a plausibly extremely high degree of prize skewness.
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1 Introduction

The popularity of commercial lotteries o�ering big prizes with small probabilities re-

veals a demand for positively skewed lotteries. Skewness preferences arise if gamblers

overweight the upper tail of probability distributions. They are commonly modeled by

rank-dependent expected utility (Quiggin, 1982), a leading theory of choice under risk,

in which agents transform cumulative probabilities.

This explanation provides an intuitive account of lottery demand but falls short as a

comprehensive description of lottery markets as the supply side of lotteries is generally

not considered. In particular, it remains unclear which exact form should take a lottery

(minimal prize, number of tickets, degree of skewness, ...) compatible with operators

maximizing their pro�t. An equilibrium approach to lottery market is also a �rst neces-

sary step towards more applied or regulatory issues like tax e�ciency and dead-weight

loss of lottery games, consequences of legal monopolies, existence of scale economies, price

and income elasticities of demand, optimal prize structure, to name a few (see Grote and

Matheson (2011) for a recent survey on those issues).

This article aims at �lling part of the gap by investigating two related issues: which

preference patterns are compatible with pro�t-maximizing lotteries endowed with mul-

tiple prizes and which form take optimal lotteries when consumers are characterized by

realistic Rank-Dependent Expected Utility (RDU) preferences? By allowing the lottery

operator to freely choose prize values, their probability, and the number of prizes, we

show that a �nite number of prizes would require both the utility and the weighting

function to turn concave then convex or vice-versa each time a new prize is added to the

lottery. In a two-payo� lottery, the utility function has a concave-convex-concave shape

as in Friedman and Savage (1948) who study the expected utility case. With more than
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two payo�s, the more realistic case, the number of alternations of the curvature of the

two functions becomes implausible.

However, and this is the second part of our paper, RDU preferences naturally �t with

continuous probability distributions. In particular, if the utility function is concave, and

the weighting function has an inverse-S shape, as the empirical literature suggests, there

will be a mass of probability on the worst outcome (paying the ticket price), and the

probability distribution will be continuous afterwards. A fundamental characteristic of

lottery games is also their very high degree of positive skewness with extremely large

jackpots o�ered with close-to-zero probabilities. We show that prizes over the continuous

part of the distribution optimally follow a power-law distribution when realistic function-

als for the utility and the weighting functions are chosen. We illustrate our result with a

calibration exercise which uses prize data from Euromillions, a Europe-wide lottery game.

We document a very high degree of skewness and show its consistency with reasonably

calibrated RDU preferences.

Our approach is in the spirit of Friedman and Savage (1948) who rationalize the de-

mand for lottery tickets in the expected utility (EU) framework. Assuming an increasing

marginal utility for a broad range of wealth provides a rationale for two-outcome lotter-

ies, but accounts for very limited patterns of gambling. Markowitz (2010) shows that EU

is unable to explain the existence of optimal lotteries with more than two payo�s. We

extend his negative result in the more general RDU framework with an arbitrary -yet

discrete- number of prizes. Quiggin (1991) also studies the optimal shape of a lottery in

RDU and shows the possibility of lotteries with multiple prizes. His argument is however

developed in a simpli�ed setup with an exogenous number of equally probable tickets.

Once the number of prizes and their probability are made endogenous, we show that a
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lottery operator has always the incentives to add new prizes between existing ones, pro-

vided implausible preference patterns are excluded. Hence the only equilibrium outcome

is a continuous prize distribution. Barberis (2012) uses cumulative prospect theory, a

variant of RDU, to explain the demand for casino gambling in an intertemporal setup.

He does not endogenize the prize structure.

Our results are also related to the burgeoning literature which shows evidence or

examine implications of a demand for skew. Garrett and Sobel (1999) and Astebro

et al. (2011) show evidence that consumers favor skewness rather than risk in lottery

games. Asterbro et al. experimentally explain skewness preferences by small probabilities

overweighting (inverse S-shaped weighting function) rather than risk loving (convex utility

function). Snowberg and Wolfers (2010) investigate the favourite-longshot bias in horse

races betting and reach similar conclusions. Barberis (2013) mention several articles

in which RDU models explain a demand for skewness. In �nancial markets Barberis

and Huang (2008) show that probability weighting may explain why positively skewed

securities are overpriced at equilibrium. We contribute to this literature by showing

that probability weighting is a better candidate than risk loving to explain multiple-

prize lotteries. The optimal degree of skewness is the result of two opposite psychological

factors. On the one hand, a concave utility function makes more costly the spread of prize

payouts and the inclusion of extreme payo�s. On the other hand a convex weighting

function for cumulative probabilities close to one leads consumers to overweight small

probabilities associated with extreme prizes, which strengthens the demand for skew. We

also link probability weighting with a demand for power-law distributions which have

attracted much attention (see e.g. Gabaix, 2011).

Last, our setting is broadly connected to the literature which studies risk sharing
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between non-expected-utility consumers. Chateauneuf et al. (2000) examine risk sharing

arrangement between risk-averse Choquet expected utility agents in special cases. Dana

and Carlier (2008) extend the analysis to a broad class of non-expected utility models.

Bernard et al. (2013) analyze the optimal insurance contract problem between a risk

neutral agent and a RDU agent with an inverse S-shaped probability weighting function.

A fundamental di�erence between those articles and the present one is that consumption

risk does not preexist in our environment. To ful�ll the demand for risk taking by RDU

agents, the lottery operator makes monetary transfers contingent to a "randomization

device". In real world, this could be a rotating ball cage or scratch cards.

The presentation is organized as follows. Section 2 studies to what extent RDU pref-

erences may explain the existence of optimal lotteries endowed with a discrete number of

prizes. Section 3 reverses the perspective and analyzes the properties of optimal lotteries

under realistic RDU preferences. The last section concludes.

2 Optimal discrete lotteries

We analyze in this section which type of preferences is consistent with pro�t-maximizing

�rms o�ering lotteries with a �nite number of payo�s (or discrete lotteries for short). The

possibility of continuous lotteries is considered in the next section.

2.1 The model

A lottery consists of n payo�s (xi)i=1,...,n, and n+ 1 cumulative probabilities (πi)i=0,1,...,n.

Payo�s belong to an interval I (which can be the set of real numbers R, or bounded

above or below, with closed or open ends). πi is the probability that the consumer gets

xi or less (with π0 = 0 and πn = 1). In a commercial lottery, payo�s are prizes net of the

5



ticket price and the smallest payo�(s) is (are) negative to ensure a positive pro�t to the

�rm. The pro�t of the risk-neutral �rm selling the lottery writes:

Π = −
n∑
i=1

(πi − πi−1)xi

Consumers are RDU decision makers1. Both nonlinear weighting of probabilities and

nonlinear utility in�uence risk preferences:

De�nition 1 Denote u a strictly increasing and continuously di�erentiable function on

I. Let g be a strictly increasing and continuously di�erentiable from [0, 1] to itself, sat-

isfying g(0) = 0 and g(1) = 1. The agent is RDU with utility function u and probability

weighting function g if the value U he derives from the lottery writes:

U =
n∑
i=1

(g(πi)− g(πi−1))u(xi)

Instead of analyzing a monopoly �rm maximizing pro�t under the participation con-

straint of the consumer, we look at the dual problem of maximizing the player's utility

subject to a minimum pro�t for the �rm. This is done for convenience reason, as it is

strictly equivalent. In both cases we are looking for a Pareto optimum.2

The lottery {xi, πi; i = 1, ..., n} is optimal if player's utility is maximized under the

constraints that the �rm obtains at least a pro�t equal to B, and that πi and xi are

increasing:

1RDU model is a simple and powerful generalization of the expected utility model. It is able to

explain the behavior observed in the Allais paradox, as well as for the observation that many people

both purchase lottery tickets and insure against losses. See Machina (1994) and Diecidue and Wakker

(2001) for an introduction to RDU theory.
2In every allocation problem with non-satiated preferences, when searching for a Pareto equilibrium,

it is equivalent to set a minimum utility for the �rst agent, and maximize the utility of the second agent,

or to do the opposite. In particular, it does not matter much how the surplus from trade is split between

the �rm and the consumer.

6



max
n



max
n∑
i=1

[g(πi)− g(πi−1)]u(xi)

s.t. −
∑n

i=1(πi − πi−1)xi = B

xi+1 − xi ≥ 0, i = 1, ..., n− 1

πi − πi−1 ≥ 0, i = 1, ..., n

π0 = 0, πn = 1

Remark 1 Payo�s and cumulative probabilities must be increasing sequences so as to

satisfy RDU preferences and de�nition of cumulative probabilities. Every time one of the

two ordering constraints binds, the number of distinct payo�s included in the lottery is

reduced by one. This is obviously the case if xi+1 = xi, where the two payo�s have the

same probability equal to πi+1 − πi−1. If πi = πi−1 the probability of winning xi is simply

zero. In both cases, removing the i-th prize does not change the nature of the lottery.

Hence we can run the maximization problem with a large number of payo�s, and end

up with a more limited number of e�ective prizes satisfying both πi > πi−1 and xi+1 > xi.

This is a two step maximization: n payo�s and probabilities are selected, but n is also

optimally chosen. Therefore an optimal lottery will have to satisfy two sets of conditions.

Let us write the two problems separately:

vn =



max
n∑
i=1

[g(πi)− g(πi−1)]u(xi)

s.t. −
∑n

i=1(πi − πi−1)xi = B

xi+1 − xi ≥ 0, i = 1, ..., n− 1

πi − πi−1 ≥ 0, i = 1, ..., n

π0 = 0, πn = 1

(1)

and

V = max
n
vn (2)
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Solving for vn is a relatively classical problem. n-optimal lotteries are lotteries that

solve this problem with a �xed number of prizes. They will be analyzed in Subsection

2.3. Solving for V is a bit di�erent. From Remark 1, we can always add super�uous

prizes to an existing lottery. Starting from a lottery with n prizes, we can replicate its

outcome with m > n prizes, so that increasing the number of prizes cannot worsen the

outcome. But if a lottery with n prizes is optimal, adding new prizes will not improve

the outcome. We analyze implied restrictions on lotteries in Subsection 2.2.

2.2 Optimality conditions

A Kuhn-Tucker function is formed in which the multipliers for the pro�t constraint, the

ordering constraints xi+1 − xi ≥ 0, i = 1, ..., n − 1 and πi − πi−1 ≥ 0, i = 1, ..., n, are

respectively λ, µi and νi. Consistent with remark 1, a payo� xi is selected in the lottery

if µi = 0 and νi = 0. The following proposition shows under which conditions a payo�

between two selected payo�s is also selected at the optimum (proofs deferred to Appendix

A):

Proposition 1 We have the following necessary conditions for payo�s (xi, πi)i = 1..n to

be selected:

g(πi)− g(πi−1)

πi − πi−1
u′(xi) = λ, i = 1, ..., n (3)

u(xi+1)− u(xi)

xi+1 − xi
g′(πi) = λ, i = 1, ..., n− 1. (4)

u′′(xi) ≤ 0, i = 1, ..., n (5)

g′′(πi) ≥ 0, i = 1, ..., n− 1. (6)

Eq. (3) shows how probability distortion a�ects prize �xing. Where the ratio [g(πi)−

g(πi−1)]/(πi − πi−1) is greater than one, the probability (πi − πi−1) of winning xi is
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overestimated, leading the operator to raise the associated prize. This operation raises

players' value of gambling and relaxes the participation constraint. A similar reasoning

holds for the choice of cumulative probabilities in Eq. (4). Increasing πi gives a greater

weight to prize xi and a smaller one to xi+1. This is pro�table where the ratio before

g′(πi) is high, i.e. where players value much the payo� increment.3

Optimality conditions only check that payo�s and probabilities are optimal but do

not guarantee that the lottery is itself optimal. We cannot rule out the possibility that

an expanded lottery including all initial payo�s plus at least one additional payo� does

not raise consumers' utility for a given level of pro�t. This issue is handled in the next

subsection.

2.3 Exclusion conditions

In accordance with Remark 1, we can always create a lottery with n + 1 payo�s that

yields the same outcome as a lottery with n payo�s. Equivalently, the sequence vn in

problem (1) is non decreasing. It will therefore have a supremum as long as it is bounded.

But if a discrete lottery Ln with n payo�s is optimal, then the supremum is a maximum.

Allowing for more prizes will not improve the outcome. In particular, adding a new prize

(xi, πi) to an already optimal lottery should lead to xi = xi+1 or πi = πi−1.

Proposition 2 (i) Let us consider a lottery with at least two selected payo�s xi−1 and

xi+1 and an intermediate payo� xi with probability πi ∈]πi−1, πi−1[. If the �rm �nds

optimal to merge xi with xi+1 then

g(πi)− g(πi−1)

πi − πi−1
≥ g(πi+1)− g(πi)

πi+1 − πi
(7)

3Prize optimality condition (3) is in Quiggin (1991) but not its counterpart (4) on optimal probabilities

as he makes the simplifying assumption of a uniform probability distribution.
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(ii) Let us assume a lottery with at least two selected payo�s xi−1 and xi+1 and an

intermediate payo� xi ∈]xi−1, xi+1[. If πi = πi−1 (i.e. the probability of xi is optimally

set to zero) then

u(xi)− u(xi−1)

xi − xi+1

≤ u(xi+1)− u(xi)

xi+1 − xi
(8)

The proof is deferred to Appendix A. Condition (7) can be rewritten as

g(πi) ≥
πi+1 − πi
πi+1 − πi−1

g(πi−1) +
πi − πi−1
πi+1 − πi−1

g(πi+1)

which has a simple geometric interpretation. The probability weighting function g(πi)

of any excluded payo� must be above the line crossing the weighting function of the near-

est left and right selected cumulative probabilities. While being locally convex around

each selected probability (see Eq. (6)), its slope must decrease between two selected prob-

abilities. Hence the weighting function is concave-convex-concave between two selected

probabilities. Figure 1. is an example of such a weighting function.4

<Include Figure 1 here>

Likewise, condition (8) can be rewritten as

u(xi) ≤
xi+1 − xi
xi+1 − xi−1

u(xi−1) +
xi − xi−1
xi+1 − xi−1

u(xi+1)

which states that the utility function of all payo�s whose probability is set to zero

must be below the line crossing the utility function of the nearest left and right selected

payo�s. While locally being locally concave around each selected payo� (5), its slope

must increase between two selected payo�s. Figure 2 provides an illustration of such a

utility function.

4Proposition 1 and 2 are also compatible with curves with more alternations. This would imply even

less plausible preferences. The same remark applies to Fig. 2.
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<Include Figure 2 here>

To sum up, proposition 1 describes optimal lotteries for which prize values and prob-

abilities are optimally chosen but the number of payo�s is given. The payo� set is next

made optimal by checking that the inclusion of new prizes does not change the number of

payo�s actually o�ered. Implied exclusion conditions are given in proposition 2. Overall,

those constraints impose implausible restrictions on the utility and weighting functions.

An optimal lottery with a �nite number of payo�s requires that the utility function has

a concave-convex-concave shape between any two consecutive payo�s and that the prob-

ability weighting function has a convex-concave-convex shape between any two adjacent

cumulative probabilities. This con�guration might be defended in the two-payo� case as

the utility function resembles the one advocated by Friedman and Savage (1948). But

since we need twice as many curvature changes of the utility and weighting functions as

the number of payo�s, it becomes harder and harder to justify lotteries with more and

more prizes.

We may conclude from this section that with more standard preferences (a concave

utility and/or a convex weighting function), adding new payo�s will always improve

consumers' utility or �rm's pro�t. More formally the sequence vn of values for lotteries

with n prizes will be strictly increasing. But if vn is bounded, this sequence will converge,

so that the marginal gain of adding one extra prize will decrease with the number of prizes.

In this case, although a lottery with a �nite number of payo�s is not optimal, it might be

a good approximation of an optimal lottery. We need however to better describe optimal

lotteries, which is the aim of the next section.
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3 Optimal lotteries for rank dependent utility players

The previous section starts from a generic form of lotteries and explores under which

type of risk preferences they are optimal. The method is reversed here. We assume that

players are characterized by realistic risk preferences and see which type of lotteries they

prefer. General results which hold for a large class of utility and weighting functions are

�rst presented. We then focus on optimal prize distributions under more speci�ed risk

preferences.

Only distributions with a �nite number of payo�s have been considered so far. All

types of cumulative distribution function (Cdf) F , with weak derivative f are now allowed,

including probability mass functions5. The only restriction we impose is that payo�s

are selected within a closed bounded interval [a; b] that may be arbitrarily large. The

continuous equivalent of the discrete RDU problem writes:
maxU(F ) =

∫ b
a
f(x)g′(F (x))u(x)dx

s.t. Π(F ) = −
∫ b
a
f(x)xdx = B

F is a Cdf on [a; b]

(9)

where U and Π are the consumer's payo� and �rm's pro�t. A lottery is optimal if

consumer's utility is maximum under the �rm's participation constraint.

Appendix B exhibits conditions for existence, uniqueness, constructibility and conti-

nuity of an optimal lottery. In particular, conditions are found under which the optimal

Cdf will be continuous and strictly increasing (neither vertical nor �at).

5Weak derivatives extends the notion of derivatives for non di�erential functions, by using integration

by part. f is the weak derivative of F if for any di�erentiable function G with derivative g and any (a, b),

we have
∫ b

a
fG = [F (b)G(b)− F (a)G(a)]−

∫ b

a
Fg.
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3.1 Realistic risk preferences

We are now able to characterize the payo� distribution properties when empirically

founded utility and weighting functions are assumed. Experimental literature has consis-

tently found an inverse-S shaped probability weighting function (Camerer and Ho, 1994;

Bleichodt and Pinto, 2000; Etchart-Vincent, 2004) and a concave utility function in the

gain domain (Tversky and Kahneman, 1992; Wu and Gonzalez, 1996; Abdellaoui, 2000,

and Abdellaoui, Bleichrodt, and Paraschiv, 2004). There is less agreement about the

shape of the utility function over losses. Abdealloui et al. (2008) review the evidence

and conclude that the utility function is slightly convex but close to linearity. We assume

that the utility function is also concave on losses as a convex part would entail a demand

for a large (even in�nite) negative payo�.

De�nition 2 A weighting function is inverse-S shaped with in�ection point δ if it is

strictly concave over [0; δ[ and strictly convex over ]δ; 1].

Proposition 3 Suppose that u is strictly concave over [a;b], and that g is inverse S-

shaped with in�ection point δ. Then:

(i) the smallest payo� x0 ≥ a has a discrete probability π0 ≥ δ, with the slackness

condition (x0 − a)(π0 − δ) = 0,

(ii) The maximum payo� x1 ≤ b has a discrete probability 1 − π1 ≥ 0, with the

slackness condition (b− x1)(1− π1) = 0,

(iii) the probability distribution is continuous over ]x0;x1[, and the Cdf F is charac-

terized by

g′(F (x))u′(x) = λ x ∈]x0;x1[ (10)

with λ a constant.
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The proof is deferred to Appendix B. A discrete probability on a and b means a

constrained optimum in which the interval constraint binds. If we were to run the problem

on a bigger interval [ã, b̃] ⊇ [a, b], a and b would become interior points, and we could use

the smoothing argument of Property 4 in Appendix B.

If the problem is well behaved, we would hope that, when extending the interval

[a, b], this constraint will stop binding at one point: the support of the distribution stops

increasing with the interval. Or, at least, that the minimum prize (the ticket price)

remains unchanged, and the discrete probability of the maximum payo� converges to

zero. This is likely to be true if limx→∞ u
′(x) = 0. In this case, if g′(1) is �nite, there will

be a point where equation (10) will no longer hold, and the support of the distribution will

end there. The marginal utility becomes so low, that, even with weighted probabilities,

it makes no sense to make those events possible. If we have limx→∞ u
′(x) = 0 and

limt→1 g
′(t) = +∞, we would probably have that limx→∞ F (x) = 1, so that there is no

discrete probability on +∞. The marginal utility becomes so low that the marginal weight

needs to be ever higher to compensate, so that the cumulative probability converges to

16.

An interesting feature of any optimal lottery is that the minimal prize has a positive

probability mass, which is reminiscent of actual lotteries in which the ticket price is lost

with a positive probabilities and no prizes below it are included in the lottery. Another

remarkable property is that, provided the upper bound constraint is not binding, prizes

above the minimum payo� are continuously distributed. Over the continuous interval,

prizes and probabilities are determined by the optimality condition (10). It is the contin-

uous analog of proposition (1). As larger prizes are included in the lottery, the disutility

6The case studied below of a power-law distribution provides an example of an optimal distribution

with unbounded support.

14



of spreading prizes (recall u is concave) must be compensated by increasing optimism

about their realization, which is made possible by the convexity of g. Condition (10) can

also be di�erentiated with respect to x:

f(x) =
−u′′(x)

u′(x)

g′(F (x))

g′′(F (x))

The lower the curvature of u or the higher the convexity of g, the lower the probability

density f and the more spread out the prize distribution.

3.2 Power-law distribution

A comprehensive theory of optimal lottery should explain why commercial lotteries are

characterized by highly skewed prize distributions, in which huge amounts of money are

o�ered with close-to-zero probabilities. Such a property naturally emerges under simple

speci�cations.

De�nition 3 The utility function is u(x) = xσ with 0 < σ < 1 over the gain domain

[0,+∞]; the weighting function has a constant relative sensitivity (CRS):

g(π) =


δ1−γπγ if 0 ≤ π ≤ δ

1− (1− δ)1−γ(1− π)γ if δ < π ≤ 1

(11)

for 0 < δ < 1 and 0 < γ < 1.

The utility function is a standard choice in most empirical works on risk attitude. CRS

functions are the equivalent of power utility function for weighting functions. They belong

to the class of switch-power weighting functions axiomatized by Diecidue et al. (2009)

and have been investigated by Abdellaoui et al. (2010). A key property is their inverse

S-shape which implies diminishing sensitivity, that is, sensitivity to changes in probability
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decreases as probability moves away from the reference points 0 and 1. Other functional

forms are possible (e.g. Tversky and Kahneman (1992) or Lattimore et al. (1992)). All

share this central property. We are interested in the extent to which consumers distort

cumulative probabilities close to one, i.e. where π > δ. Accordingly, let us pose the dual

function

h(1− π) = 1− g(π) = (1− δ)1−γ(1− π)γ

over the right-hand part of the distribution. The index of relative curvature of this

function is:

−(1− π)h”(1− π)

h′(1− π)
= 1− γ,

hence the name of constant relative sensitivity. It allows a separation of two sources of

probability distortion: the degree of relative optimism measured by the elevation param-

eter δ (see Abdellaoui et al., 2010) and the degree of sensitivity towards probabilities

of extreme outcomes measured by the parameter γ. The smaller γ, the more concave

the dual weighting function, and the more sensitive are consumers to changes in cumu-

lative probabilities close to 1. With those assumptions, if we use Eq. (10), even though

the interval is not bounded, and limt→1 g
′(t) = +∞, what do we get (proof deferred to

Appendix B)?

Proposition 4 Under De�nition 3, the optimal Cdf is a power-law distribution, with a

tail index α = (1− σ)/(1− γ).

Prop. 4 gives a simple formula for the tail index of the prize distribution. It puts

forth two key psychological factors. The smaller σ, the more concave the utility function

and the more costly the spread of prize payouts over the gain domain. The upper tail

of the prize distribution is consequently thinner, as a higher tail index diminishes the
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proportion of extreme prizes. The closer γ to 0, the more sensitive consumers are to

changes in cumulative probabilities close to 1 and the greater the overweighting of small

probabilities associated with extreme prizes. For a given utility curvature, this leads the

�rm to skew the prize distribution further so as to make the game more attractive to

players who are overoptimistic about the occurrence of extremely unlikely events.

3.3 Tail-fatness estimation

It is interesting to look at whether the optimality condition α = (1 − σ)/(1 − γ) found

in Prop. (4) is roughly consistent with experimental values and observed tail-fatness of

lotteries. Empirical estimates of behavioral parameters σ and γ can be found in the

experimental literature. Abdellaoui et al. (2010) �nd a relative sensitivity coe�cient γ

around 0.5. Estimates of the power coe�cient σ are in the interval [0.3, 0.9] 7 Replaced

in the optimality condition, this implies a tail index α between 0.2 and 1.4. All values

imply extremely large degrees of tail-fatness. As a reference point, Atkinson and Piketty

(2007) report a tail index between 1.5 and 3 for income and Kleiber and Kotz (2003)

around 1.5 for wealth.

We may estimate the parameter α for a popular lotto game called Euromillions,

launched in 2004 in nine European countries. We choose this game for its wide popularity,

prize data availability, and the richness of its prize structure. In this lotto game, �ve

numbers are drawn in the set 1 to 50 and two bonus numbers in the set 1 to 9. There

are 12 winning ranks according to how many numbers are guessed in the two sets8. Fig.

3 plots −log(1−F (x)) over log(x) based on the observation of 378 consecutive drawings

7Tversky and Kahneman (1992), Abdellaoui (2000) and Abdellaoui et al. (2007) �nd resp. σ = 0.88,

0.89 and 0.75 while Wu and Gonzalez (1996), Camerer and Ho (1994) and Fennema and van Assen (1998)

�nd lower values (resp. σ = 0.52, 0.37 and around 0.3).
8See Roger (2011) for a more detailed description of the game.
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run between February-2004 and May 20119.

<Include Figure 3 around here>

Each point represents one of the 3,616 prize payouts recorded in the data. Assuming

that players face a time-invariant prize distribution10, we can see that prizes (net of the

ticket cost) extend across a very large interval from 5 to 129, 818, 429 euros with few gaps

in between. Hence a player may hope to win almost any level of gains with a positive

probability over an extremely large prize set. This property comes from the parimutuel

nature of the game in which money prizes greatly vary across drawings. Total prizes are

set equal to a percentage of the total amount bet11. As ticket sales and the number of

winners at each rank �uctuates across draws, prize values are random. The more tickets

sold, the larger the pie to be divided among winners. The greater the number of winners

at a given rank, the smaller the individual shares at this rank. These two factors are

random and explain why the prize distribution spans a very large prize space.

Figure 3 �ts a linear regression model between the log countercumulative distribution

function and log prize. The relationship is close to linearity despite local �uctuations

around the trend, with a R2 of 0.94. The average slope, an estimate of the tail index α12

is 1.066 which denotes a highly skewed prize distribution. It is within the range [0.2, 1.4]

found in the literature previously described. Hence, the optimality condition in Prop.

4 is at �rst look consistent with plausible values of the preference parameters. Another

9Data on payouts and numbers of winners at each rank is available on the French lottery operator

web page www.francaise-des-jeux.fr.
10This is not always veri�ed in practice due to episodes in which jackpots are rolled over in the absence

of winners. Suppressing rollovers from the data set would only a�ect the distribution of extreme gains.
11A winner at rank i = 1, ..., 12 receives an amount equal to ϕi(1 − τ)S/xi where ϕi is the share of

(net of tax τ) proceeds S dedicated to rank i winners, and xi the number of winners at rank i.
12The log countercumulative distribution function and log prize are linearly related in power-law

distributions.
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implication is that while diminishing marginal utility is a necessary condition for a prize

distribution to be optimal, this does not prevent the marketing of highly skewed lotteries.

4 Conclusion

This article considers lotteries as Pareto equilibria between a �rm and RDU consumers.

We �nd that lotteries with a discrete number of prizes are incompatible with standard

RDU preferences, but continuous lotteries are. The minimal prize has a positive proba-

bility mass and prizes above it are continuously distributed. Under realistic utility and

weighting functions the optimal prize structure follows a power-law distribution. A back-

of-the-envelope calibration based on data from the lotto game Euromillions suggests that

an extreme value of tail-fatness is still compatible with a realistic degree of concavity of

the utility function and convexity of the weighting function.

Our conclusion that RDU models cannot explain lotteries with a discrete number of

payo�s should be treated with caution for at least two reasons. First, while lotteries with

a discrete number of prizes cannot be optimal, the pro�t and utility that they bring might

be close to the optimum reached with a continuum of prizes. This is a quantitative issue

that only a calibration exercise could settle. Second, commercial lotteries have a �nite

number of prizes because of practicality and simplicity. Here our model misses possibly

important physical constraints independent of our preference assumptions. On the other

hand, it is also possible that even lotteries with a very large number of prizes, a proxy

for continuous lotteries, could be dominated by lotteries with fewer prizes for behavioral

reasons not explained by RDU preferences. This would be the case if individuals feel

uneasy with complex random processes or distrust lotteries with many prizes as being

less transparent. Those hypotheses outline the necessity to pursue additional research to
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narrow the gap between prize structures observed in commercial lotteries and risk theory.
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Appendix A Proofs for discrete lotteries

Proof of Proposition 1

First order conditions (FOC) with regard to payo� xi are:

(g(πi)− g(πi−1))u
′(xi)− λ(πi − πi−1) + µi−1 − µi = 0 (12)

with µi = µi−1 = 0 as xi and xi−1 are also selected payo�s. For x1 and xn, there is no

corresponding µ0 nor µn, so they do not need to be set to 0. The FOC with regard to πi

is:

−(u(xi+1)− u(xi))g
′(πi) + λ(xi+1 − xi) + νi − νi+1 = 0 (13)

Since xi and xi+1 are two selected payo�s, νi = νi+1 = 0.

The necessary second order conditions write as the negative semi-de�niteness of

the Hessian matrix. In particular, it implies that all the diagonal elements (g(πi) −
g(πi−1))u

′′(xi) and −(u(xi+1)−u(xi))g
′′(πi) of this matrix are non positive. We conclude

with g(πi) > g(πi−1) and u(xi+1) > u(xi) as the payo�s are selected.

We assumed without loss of generality that all payo�s were selected. If some were

super�uous, we could simply remove them. �

Proof of Proposition 2

(i) Since xi−1 and xi+1 are selected, µi−1 = µi+1 = 0. xi = xi+1 implies µi ≥ 0. The FOC

associated with xi and xi+1 are given by Eq. (12):

(g(πi)− g(πi−1))u
′(xi)− λ(πi − πi−1)− µi = 0

(g(πi+1)− g(πi))u
′(xi+1)− λ(πi+1 − πi) + µi = 0.

This implies:

g(πi)− g(πi−1)

πi − πi−1
u′(xi) ≥ λ ≥ g(πi+1)− g(πi)

πi+1 − πi
u′(xi) �

(ii) As xi−1 and xi+1 are selected νi−1 = νi+1 = 0. πi = πi−1 implies νi ≥ 0. From Eq.

(13), the FOC associated with πi−1 and πi are respectively:

(u(xi)− u(xi−1))g
′(πi)− λ(xi − xi−1) + νi = 0

(u(xi+1)− u(xi))g
′(πi)− λ(xi+1 − xi)− νi = 0,

implying:
u(xi)− u(xi−1)

xi − xi−1
g′(πi) ≤ λ ≤ u(xi+1)− u(xi)

xi+1 − xi
g′(πi) �
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Appendix B Proofs for continuous lotteries

Properties of continuous lotteries

The Appendix begins by proving four general properties of optimal lotteries: existence

(Property 1), uniqueness (Property 2), constructibility (Property 3) and continuity (Prop-

erty 4). We �rst need to pose alternative formulations of utility and pro�t (Remark 2)

and recall Helly's selection theorem (Theorem 1). Last, the Appendix provides the proofs

of Prop. (3) and (4) which address the optimal shape of lotteries.

Remark 2 Alternative formulations of preferences and pro�t. Three alternative formu-

lations are used in the proofs of this Appendix. The second expressions are integrated by

part (Eq. (15) and (18)) and in the third ones F (x) is inverted into x(t) (Eq. (16) and

(19)). Players' preferences may alternatively be written as:

U(F ) =

∫ b

a

f(x)g′(F (x))u(x)dx (14)

U(F ) = u(b)−
∫ b

a

g(F (x))u′(x)dx (15)

U(F ) =

∫ 1

0

g′(t)u(x(t))dt (16)

Likewise, the �rm's pro�t expresses as:

Π(F ) = −
∫ b

a

f(x)xdx = B (17)

Π(F ) = −b+

∫ b

a

F (x)dx (18)

Π(F ) = −
∫ 1

0

x(t)dt (19)

To prove the existence of an optimal lottery, we need Helly's selection theorem, a

compactness result for increasing functions.

Theorem 1 Helly's selection theorem: Let (fn)n∈N be a sequence of increasing functions

from R to [0; 1]. Then, there exists a subsequence converging pointwise to an increasing

function f from R to [0; 1]. Furthermore, the number of discontinuities of f is at most

countable.

Property 1 When the payo� space is closed and bounded, an optimal lottery exists.
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Proof Let us de�ne a lottery as a non-decreasing function F from the interval [a; b]

to [0; 1]. Since [a; b] is bounded, the utility that the consumer can get from a lottery

is also bounded. Denote S the set of non-decreasing functions from [a; b] to [0; 1] that

also satisfy the pro�t constraint of the �rm. U has an upper bound on S. Then there

exists a sequence of non-decreasing functions whose utility converges to the upper bound:

∃(Fn)n∈N ∈ SN, U(Fn) → supSU . According to Helly's selection theorem, there exists a

subsequence (Fϕ(n))n∈N converging pointwise (and therefore in distribution) to a non

decreasing function F .

Since the prize space [a; b] is closed and bounded, we can integrate by parts (Remark

2), so with
∫ b
a
F (x)dx = limn→∞

∫ b
a
Fϕ(n)(x)dx, we have Π(F ) = limn→∞Π(Fϕ(n)), F still

satis�es the pro�t constraint, F ∈ S. Next, still using Remark 2, since the prize space

[a; b] is a closed and bounded interval, the derivative of u is a bounded function, as it is

continuous, and therefore∫ b

a

g(Fϕ(n)(x))u′(x)dx
n→∞→

∫ b

a

g(F (x))u′(x)dx

so that U(F ) = supS(U), hence F is optimal. �

Some additional restrictions are needed for uniqueness:

Property 2 If an optimal lottery exists and if u is strictly concave or g strictly convex,

then the lottery is unique.

Proof Let us denote x(t) the inverse of the cumulative distribution function F (x). If

two di�erent lotteries x1(t) and x2(t) yield the same optimal utility de�ned in Eq. (16)

and if the function u is concave, we have

∀t, u(
x1(t) + x2(t)

2
) ≥ u(x1(t)) + u(x2(t))

2
,

the inequality being strict whenever u is strictly concave and x1(t) 6= x2(t). Therefore,

if we write F the function associated with x(t) = x1(t)+x2(t)
2

, if u is strictly concave and

x1 and x2 are not almost surely equal we have U(F ) > U(F1)+U(F2)
2

= supSU , because

we integrate a strict di�erence. This is contradictory. Hence the optimal lottery is

unique. The same reasoning applies with the second expression of consumer's utility

(15): whenever g is strictly convex, −g is strictly concave, and the same computations

bring uniqueness. �

We have found conditions of existence and uniqueness of an optimal lottery, but we

do not know what it looks like, or how to �nd it. The next property tells us that it can
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be seen as the limit of continuous functions, or of step functions. It also tells us that if

we run the maximization program for 2-payo� lotteries, 3-payo� lotteries, and so on, we

will converge to the optimal lottery.

Property 3 (i) An optimal lottery can be expressed as the pointwise limit of continuous

functions (ii) An optimal lottery can be expressed as the pointwise limit of right-continuous

step functions (discrete lotteries) (iii) If the optimal lottery is unique, it can be expressed

as the pointwise limit of n-optimal lotteries.

The proof comes from the fact that under certain conditions, step functions can be

approximated by continuous functions, and continuous functions by step functions. This

proposition will be useful as some desirable properties of optimal lotteries will be retained

when taking the limit.

Proof (i) and (ii): Write the function as the sum of a continuous function and a dis-

continuous step function. From Helly's theorem, the number of discontinuities is at most

countable. First, the discontinuous function can be approximated pointwise by a se-

quence of continuous functions, and by a sequence of right-continuous step functions.

Second, since we are on a closed bounded interval, the continuous function can be ap-

proximated pointwise by a sequence of continuous functions and by a sequence of step

functions. Therefore, an optimal lottery can be written as the pointwise limit of contin-

uous lotteries, and also as the limit of discrete lotteries. (iii) If (Fn)n∈N is a sequence of

lotteries converging to F , where Fn has at most n prizes, write Hn a n-optimal lottery.

U(Fn) ≤ U(Hn) = supS(U) = limk→∞ U(Fk), so that limn→∞ U(Hn) = supS(U). With

Helly's theorem, a subsequence of (Hn) converges to some H. And because of unicity of

the optimal lottery, H = F , any optimal lottery can be written as the limit of n-optimal

lotteries. �

We now turn to the important issue of continuity of the distribution. In the case of

discrete lotteries (see (5) and (6)), the utility function cannot be strictly convex at interior

payo�s (di�erent from a or b, the bounds of the payo� interval). Likewise, the weighting

function cannot be strictly concave at interior cumulative probabilities (di�erent from

0 or 1). This means that for n-optimal lotteries, the Cdf will be constant (no positive

probability) on any interval where the utility function is strictly convex, and the Cdf will

jump when the weighting function is strictly concave (no selected probability). This is

still true for optimal continuous distributions, since it is the pointwise limit of n-optimal

lotteries (Property 3). Therefore, the Cdf must jump wherever the weighting function

is strictly concave, and it must stay constant wherever the utility is strictly convex. Is

it possible that the Cdf jumps even though the weighting function is strictly convex, or

that it stays constant even though the utility is strictly concave? The answer is negative:
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Property 4 If the weighting function g is strictly convex on [c; d] ⊂ [0; 1], then the

optimal cumulative distribution function F cannot jump from c to d at an interior point.

If the utility u is strictly concave on [x; y] ⊂ [a; b], then F cannot be constant on [x; y].

The basic idea of the proof is that it is �rst-order optimal to �smooth� the vertical and

horizontal parts of the Cdf. Property 4 shows that at interior points where the weighting

function is convex and the utility function is concave, the Cdf is strictly increasing, so

that it is continuous. In other words, the payo� probability distribution is continuous

wherever the utility function is concave and the weighting function convex (and not

continuous otherwise, as already stated previously).

Proof The steps of the proof are the following: we take the Cdf with the jump, transform

the jump into a steep, yet continuous function, and show that the transformation brings

a marginal gain. Suppose that F does jump from c = F (x−0 ) to d = F (x+0 ), at an interior

point x0. Write H(y) = 0 if y < −1/2, H(y) = 1
2

+ y if y ∈
[
−1

2
; 1
2

]
, and 1 otherwise.

Write h(t, x) = (d − c)H(x−x0
t

). Then write F (x) = C(x) + h(0, x), where the function

C is continuous in x0, and h(0, x) is the pointwise limit of h when t → 0+, and write

F (t, x) = C(x) + h(t, x), so that F (x) = F (0, x). It is obvious that the pro�t of the �rm

does not depend on t. Now, write U(t) = U(F (t, x)), the utility of the consumer de�ned

in Eq. (15). We have:

U(t)− U(0) = −
∫ x0+t/2

x0−t/2
(g(F (t, x))− g(F (0, x)))u′(x)dx

Writing x = x0 + ty,

U(t)− U(0) =

∫ 1/2

−1/2
(g(F (0, x0 + ty))− g(F (t, x0 + ty)))u′(x0 + ty)(tdy)

U(t)− U(0) = t.

∫ 1/2

−1/2

 g(C(x0 + ty) + h(0, x0 + ty))

−g(C(x0 + ty) + h(t, x0 + ty))

u′(x0 + ty)dy

U(t)− U(0) = t.

∫ 0

−1/2

 g(C(x0 + ty))

−g(C(x0 + ty) + (d− c)H(y))

u′(x0 + ty)dy

+t.

∫ 1/2

0

 g(C(x0 + ty) + (d− c))

g(C(x0 + ty) + (d− c)H(y))

u′(x0 + ty)dy
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U(t)− U(0) = t.

∫ 0

−1/2

 g(C(x0 + ty))

−g(C(x0 + ty) + (d− c)(1
2

+ y))

u′(x0 + ty)dy

+t.

∫ 1/2

0

 g(C(x0 + ty) + (d− c))

−g(C(x0 + ty) + (d− c)(1
2

+ y))

u′(x0 + ty)dy

Therefore

U ′(0) = lim
t→0+

U(t)− U(0)

t

U ′(0) =

∫ 0

−1/2
(g(C(x0))− g(C(x0) + (d− c)(1

2
+ y)))u′(x0)dy

+

∫ 1/2

0

(g(C(x0) + (d− c))− g(C(x0) + (d− c)(1

2
+ y)))u′(x0)dy

U ′(0) =

∫ 0

−1/2
(g(c)− g(c+ (d− c)(1

2
+ y)))u′(x0)dy

+

∫ 1/2

0

(g(d)− g(c+ (d− c)(1

2
+ y)))u′(x0)dy

If we write, for matters of convenience G(z) = g(c+(d−c)(1
2
+y)) then G(−1

2
) = g(c),

G(1
2
) = g(d), and

U ′(0) =

∫ 1/2

0

((G(
1

2
)−G(y))− (G(−y)−G(−1

2
)))u′(x0)dy

Since g is strictly convex, so is G, and therefore for every y ∈ [0; 1
2
[, G(1

2
) − G(y) >

G(−y)−G(−1
2
), so that U ′(0) > 0. This means that the cumulative distribution function

was not optimal, and a small "smoothing" can increase the pro�t.

Here, we used expression (15) for consumer's utility. The same can be done with

expression (16). The constant parts of the Cdf corresponds to jumps for its inverse.

When u is strictly concave, −u is strictly convex, so that the same computations can be

used to "smooth" the jumps of the inverse of the Cdf, and therefore, the horizontal parts

of the Cdf, as long as interior conditions are satis�ed.

Proof of Proposition 3

(i): Proposition 2 shows that for discrete lotteries, optimality implies that the Cdf jumps

when the weighting function is concave. Through Property 3, this property is kept for

continuous optimal lotteries. Hence the �rst probability π0 is at least δ. Suppose now
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that both π0 > δ and x0 > a. This means that the Cdf jumps from 0 to π0 at x0. Or

equivalently the Cdf jumps from 0 to δ, and from δ to π0 at x0 > a. Since [δ, π0] is in the

convex part of the weighting function, and x0 is in the interior of the concave part of the

utility, this is impossible because of Property 4 in the same appendix. This brings the

slackness condition.

(ii): Similarly, at least the payo� x1 or the probability 1 − π1 must not be interior,

because of Property 4.

(iii): Property 4 shows that when the utility is strictly concave, or when the weighting

function is strictly convex, f is strictly positive, so that the increasing constraint on F is

not binding. We can integrate by parts the utility and the pro�t:

U = g(π0)u(x0) +

∫ x1

x0

f(x)g′(F (x))u(x)dx+ (1− g(π1))u(x1)

= u(x1)−
∫ x1

x0

g(F (x))u′(x)dx

Π = −π0x0 −
∫ x1

x0

f(x)xdx− (1− π1)x1 = −x1 +

∫ x1

x0

F (x)dx

Then problem (9) can be expressed as a Lagrangian, with only F , and not f :

L = u(x1)− λ(x1 +B)−
∫ x1

x0

[g(F (x))u′(x)− λF (x)] dx

The �rst order condition with respect to F (x) yields Eq. (10). �

Proof of Proposition 4

The �rst order optimality condition (10) over the concave part of h (or the right-hand

convex part of g) is:

h′(1− F (x))u′(x) = λ.

Let us di�erentiate both sides with respect to x:

−h”(1− F (x))F ′(x)u′(x) + h′(1− F (x))u”(x) = 0.

After a few arrangements, the elasticity of the countercumulative distribution function

with respect to payo�s is constant:

ε(1−F (x))/x = −−xu”(x)

u′(x)

h′(1− F (x))

−(1− F (x))h”(1− F (x))
= −1− σ

1− γ

hence F follows a power-law distribution with a tail index α = (1− σ)/(1− γ). �
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Figure 1: Example of probability weighting function

Note: The �gure displays a probability weighting function consistent with an optimal

lottery endowed with a �nite number of prizes. Cumulative probabilities πi−1, πi+1 and

πi+2 are selected probabilities and lie where the weighting function is locally convex. πi
is an example of excluded probability as g(πi) is above the line crossing the weighting

function of the nearest left and right selected cumulative probabilities.

Figure 2: Example of utility function

Note: The �gure displays a utility function consistent with an optimal lottery endowed

with a �nite number of prizes. Payo�s xi−1, xi+1 and xi+2 are selected payo�s. They lie

where the utility function is locally concave. xi is excluded from the lottery as u(xi) is

below the line crossing the utility function of the nearest left and right selected payo�s.
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Figure 3: Prize distribution of Euromillions

Notes: log(1 − F (x)) is log countercumulative distribution function, log(x) is log prize.

The computation of the prize distribution is based on the observation of 378 consecutive

drawings run between February 2004 and May 2011. The data set includes 3,616 prize

payouts and 611,269,599 winners. Source: www.fdj.fr.
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